Пусть точка пересечения биссектрисы угла А со стороной ВС К угол АКВ равен 33 градуса, по условию т.к. противоположные стороны параллелограмма параллельны , углы АКВ и КАД равны, как внутренние накрест лежащие угол КАД равен углу КАВ , т.к. АК-биссектриса т.е. ВАД=КАД+КАВ=33+33=66 градусов это и есть острый угол параллелограмма ответ:66
Anait_Natalya451
15.03.2022
Проводим высоты из углов меньшего основания к большему, получаем 2 одинаковых прямоугольных треугольника и прямоугольник. От большего основания отнимаем меньшее и делим на два, получаем один из катетов этого прямоугольного треугольника, а гипотенуза у нас есть из дано (это боковая сторона трапеции). По известным катету и гипотенузе находим один угол, тот что на большем основании трапеции (второй угол к нижнему основанию трапеции такой же). Теперь находим угол при меньшем основании: от 180 отнимаем нижний угол. Готово.
mrubleva42
15.03.2022
Основание пирамиды - правильный шестиугольник. По его свойствам радиус описанной вокруг него окружности равен его стороне. AD=2R=2AB (диаметр). Треугольник АFD прямоугольный с <F=90°, так как он опирается на диаметр описанной около правильного шестиугольника (основание пирамиды) окружности. AF=2√3(дано) AD=4√3. По Пифагору DF=√(AD²-AF²)=√[(4√3)²-(2√3)²]=√(48-12)=6. По Герону площадь треугольника FSD равна S=√[p(p-a)(p-b)(p-c)]. р - полупериметр. В нашем случае полупериметр равен (FS+DS+FD)/2 или р=(2√39+6)/2 =√39+3. Тогда площадь треугольника FSD равна S=√[(√39+3)*3*3*(√39-3)] или S=√[(√39²-3²)=√30. Эта же площадь равна (1/2)*DH*FS, где DH - высота, проведенная к стороне SF (искомое расстояние от D до плоскости FAS). Тогда DH=2S/SF=2√30/√39=2√10/√13.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти величину острого угла параллелограмма авсd, если биссектриса угла а образует с его стороной вс угол, равный 33 градусам. ответ дайте в градусах
угол АКВ равен 33 градуса, по условию
т.к. противоположные стороны параллелограмма параллельны , углы АКВ и КАД равны, как внутренние накрест лежащие
угол КАД равен углу КАВ , т.к. АК-биссектриса
т.е. ВАД=КАД+КАВ=33+33=66 градусов
это и есть острый угол параллелограмма
ответ:66