ЕF и ВС параллельны. Отрезок MN - секущая при них.
Соответственные углы при пересечении параллельных прямых секущей равны. ∠NDF=∠NMC
По свойству касательных из одной точки СМ=CN и ∆ МСN- равнобедренный. ⇒ углы при его основании MN равны ( свойство).
∠NDF=∠NMC; ∠NMC=∠MNC ⇒
∠NDF=∠MNC. По признаку равнобедренного треугольника МF=DF.
∆ MDF- равнобедренный.
б)Отметим на АВ точку касания с окружностью буквой Т
Проведем ЕК. Для ∆ ВЕК окружность - вневписанная.
Отметим на ЕК точку Н - точку касания с окружностью.
ЕТ=ЕН, HК=KN, а так как ВТ=ВN, то ЕТ=КN ( расстояние от вершины треугольника до точки касания вневписанной окружности с продолжением его боковой стороны равно полупериметру )=>
ВК=ВЕ=10 (из равных отрезков ВТ и ВN- вычли равные ЕТ и КN)
Но ВК=ЕD. Параллелограмм ВЕDК - ромб.
S (BEDK)=BE²•sin∠EBK=100•√3/2=50√3
S(BED)=S(BEDK):2=25√3 (ед. площади)
Поделитесь своими знаниями, ответьте на вопрос:
Из одной точки окружности проведены два отрезка: хорда и радиус. один отрезок равен 6 см, а другой 12 см. найдите радиус окружности.