а) Меньшая высота параллелограмма находится из равнобедренного прямоугольного треугольника АВН (острые углы = 45°). По Пифагору 2*ВН²=АВ². Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.
б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD:
<КАD =<KDA = 45°. Значит АК=КD= а√2.
Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3.
Sinα = a/а√3 = √3/3.
ответ: искомый угол равен arcsin(√3/3).
в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√2).
г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть
Sполн=а²(2+√2)+2*AD*BH=а²(2+√2)+4а² = а²(6+√2).
Дано:
SABC - правильная треугольная пирамида
SO - высота SO⊥(ABC)
AB = BC = AC = √10
SA = SB = 5
-------------------------------------------------------------------
Найти:
р(AS, BC) - ?
ΔABC - равносторонний, поэтому:
AO = AB/√3 = √10/√3 × √3/√3 = √30/3
SA² = SO² + AO² ⇒ SO = √SA² - AO² - теорема Пифагора
SO = √5² - (√30/3)² = √25 - 30/9 = √225-30/9 = √195/9 = √195/3
Теперь мы находим объем Пирамиды:
V = 1/3 × Sосн × SO = 1/3 × AB²√3/4 × SO = 1/3 ×(√10)²×√3/4 × √195/3 = 1/3 × 10√3/4 × √195/3 = 1/3 × 5√3/2 × √195/3 = 5√585/18 = 5×√9×65/18 = 5×3√65/18 = 15√65/18 = 5√65/6
Но с другой стороны можно и так записать формулу:
V = 1/3 × S(ΔBCS) × h (1), где h – искомое расстояние ⇒ р(AS, BC) = h
Проведем SM⊥BC ⇒ SM = h.
Так как ΔSMB - прямоугольный (∠SMB = 90°), тогда используется по теореме Пифагора:
SB² = SM² + MB² ⇒ SM = √SB² - MB² - теорема Пифагора
MB = BC/2 = √10/2
SM = √5² - (√10/2)² = √25 - 10/4 = √100-10/4 = √90/4 = √90/2 = √9×10/2 = 3√10/2
И теперь находим площадь ΔSBC:
S(ΔSBC) = 1/2 × SM × BC = 1/2 × 3√10/2 × √10 = 30/4 = 15/2
И теперь мы находим высоту из объема пирамиды (1):
V = 1/3 × S(ΔBCS) × h ⇒ h = 3V/S(ΔBCS) - нахождение высоты ΔSBC
h = 3 × 5√65/6 / 15/2 = 5√65/2 / 15/2 = 5√65/12 = √65/3 ⇒ SM = р(AS, BC) = h = √65/3
ответ: р(AS, BC) = √65/3
P.S. Рисунок показан внизу↓
Поделитесь своими знаниями, ответьте на вопрос:
Острый угол прямоугольной трапеции равен 45 градусам. длина короткой стороны и короткой основы равна 12 дм надо вычислить длину длинной основы.
из верщины С трапеции АBCD опускаем перпендикуляр на болшую сторону AD,получим
квадрат ABCK со сторонами =10 см Триугольник RCD равнобедренный,т.к угол D = углу С =45, следовательно KD =10 , AD =АК+КD =20