Мартынова_Ринатовна1657
?>

Решить ! в правильной n-угольной призме сторона основания равна а и высота равна h. вычислите площадь боковой и полной поверхностей призмы, если: в) n = 6, а =23 см, h = 5 дм

Геометрия

Ответы

Shaubnatali
S бок. пов. = P*H
H=5 дм = 50 см
P=6*23=138 см
S бок. пов.=50*138=6900 см²
S полной поверхности=2S осн.+S бок. пов.
S осн.=3√3*a²/2=3√3*23²/2=1587√3/2
S полной поверхности=2*1587√3/2+6900=1587√3+6900
snabdonm501
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
1. Пусть АМ = х, тогда СМ = 3 - х.
(3 - x) : x = 3 : 2
6 - 2x = 3x
5x = 6
x = 1,2
AM = 1,2 см, СМ = 1,8 см

2. Так как MN < NK, то MP < PK.
Пусть МР = х, тогда РК = х + 0,5
4 : x = 5 : (x + 0,5)
5x = 4x + 2
x = 2
МР =2 см, РК = 2,5 см

3. DE + EP = Pdep - DP = 21 - 7 = 14 см
Пусть DE = x, тогда ЕР = 14 - х
x : 3 = (14 - x) : 4
4x = 42 - 3x
7x = 42
x = 6
DE = 6 см, ЕР = 8 см

4. Пусть АВ = х, тогда ВС = х + 3.
x : 2 = (x + 3) : 3
3x = 2x + 6
x = 6
АВ = 6 см, ВС = 9 см

6. В условии опечатка: надо найти длины сторон CD и DE.
DF - диагональ ромба, а диагонали ромба лежат на биссектрисах его углов, значит DF - биссектриса треугольника.
CD + DE = Pcde - CE = 55 - 20 = 35 см
Пусть CD = х, тогда DE = 35 - х
x : 8 = (35 - x) : 12
12x = 280 - 8x
20x = 280
x = 14
CD = 14 см, DE = 21 см

7. ΔАВС, ∠С = 90°, АМ - биссектриса.
Пусть АС = х, тогда по теореме Пифагора АВ = √(х² + 81).
x : 4 = √(х² + 81) : 5
5x = 4√(х² + 81)
25x² = 16x² + 81 · 16
9x² = 81 · 16
x² = 9 · 16
x = 3 · 4 = 12
АС = 12 см
Sabc = AC · CB / 2 = 12 · 9 = 54 см²

8. Так как точка О равноудалена от катетов, СО - диагональ квадрата, а диагонали квадрата лежат на биссектрисах его углов. Значит СО - биссектриса треугольника.
а : 40 = b : 30
b = 30a / 40 = 3a/4
По теореме Пифагора:
70² = a² + 9a²/16
25a²/16 = 4900
a² = 4900 · 16 / 25 = 196 · 16
a = 14 · 4 = 56
CB = 56 см
АС = 3 · 56 / 4 = 3 · 14 = 42 см
Sabc = CB · AC / 2 = 56 · 42 / 2 = 1176 см²

9. ΔАВС: ∠В = 60°, ∠С = 40°, ⇒ ∠А = 80°.
О - точка пересечения биссектрис.
∠ОАС + ∠ОСА = (∠А + ∠С)/2 = (80° + 40°)/2 = 60°
Из ΔОАС ∠АОС = 180° - (∠ОАС + ∠ОСА) = 180° - 60° = 120°

10. ΔАВС с прямым углом С, СМ - биссектриса.
АС = АВ/2 = 2 см как катет, лежащий напротив угла в 30°.
По теореме Пифагора
ВС = √(АВ² - АС²) = √(16 - 4) = √12 = 2√3 см
Пусть АМ = х, тогда МВ = 4 - х.
x : 2 = (4 - x) : (2√3)
2√3x = 8 - 2x
2x(√3 + 1) = 8
x = 4 / (√3 + 1) = 4(√3 - 1) / (3 - 1) = 2(√3 - 1)
AM = 2(√3 - 1) см
МВ = 4 - (2√3 - 2) = 6 - 2√3 = 2√3(√3 - 1) см

11. ΔАВС: ∠С = 90°, ∠А = 60°, ⇒ ∠В = 30°, тогда
АВ = 2АС = 2√3 см по свойству катета, лежащего напротив угла в 30°.
По теореме Пифагора:
ВС = √(АВ² - АС²) = √(12 - 3) = √9 = 3 см
СМ - биссектриса.
Пусть АМ = х, МВ = 2√3 - х.
x : √3 = (2√3 - x) : 3
3x = 6 - √3x
x(3 + √3) = 6
x = 6 / (3 + √3) = 6(3 - √3) /(9 - 3) = 3 - √3 = √3(√3 - 1)
AM = √3(√3 - 1) см
МВ = 2√3 - 3 + √3 = 3√3 - 3 = 3(√3 - 1) см
vmnk38

Дано:

ABCDA_1B_1C_1D_1 - Правильная усеченная пирамида

AA_1=8cm (ребро)

A_1C=4\sqrt{5} (диагональ)

Найти: AB-?

1) Проведём две высоты к плоскости ABCD из вершин A_1 и C_1  И отметим их как H и H_1 соответственно.

2)Рассмотрим полученный треугольник AHA_1; По чертежу видно, что этот треугольник прямоугольный и один из его острых углов равен 60 градусов, что означает что второй его угол равен 30 градусам, следовательно если нам известна AA_1, то можно и найти AH

AH=\frac{1}{2}AA_1=\frac{8}{2}=4 (Против угла в 30 градусов лежит катет равный половине гипотенузы).

3)Поскольку пирамида правильная, то высоты, которые были проведены в 1 пункте делят диагональ квадрата ABCD на 3 отрезка, причем AH=H_1C=4

4) Используя правило прямоугольного треугольника, при двух его известных сторонах и углу, можно найти другую сторону этого треугольника: A_1H=AA_1*Sin60=8*\frac{\sqrt{3} }{2}=4\sqrt{3}

5)Следует детально рассмотреть треугольник CHA_1 В нем известны две стороны, и он прямоугольный, а значит можно найти CH по теореме Пифагора. CH=\sqrt{A_1C^{2} -A_1H_2} =\sqrt{ 80-48}=\sqrt{32}=4\sqrt{2}.

6)Отсюда можно найти AC.

AC=4+4\sqrt{2}. Знаю эту величину можем найти искомую АB.

Поскольку в основании правильной усеченной четырёхугольной пирамиды лежит квадрат. AB=\sqrt{AC^{2} -BC^{2} }; Но также стоит заметить, что AB\sqrt{2}=AC, но второй намного легче, чем мучиться с преобразованием корневых выражений. AB\sqrt{2}=4+4\sqrt{2} \\AB=\frac{4(1+\sqrt{2} )}{\sqrt{2} } =\frac{4\sqrt{2}+ 8}{2} =2\sqrt{2}+4

ответ: AB= двум корней из двух плюс 4


Боковое ребро правильной четырёхугольной усечённой пирамиды равно 8 см и наклонено к плоскости основ

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить ! в правильной n-угольной призме сторона основания равна а и высота равна h. вычислите площадь боковой и полной поверхностей призмы, если: в) n = 6, а =23 см, h = 5 дм
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

cheremetdiana
irina-mic
nat63nesnova5
es196
izykova22
polina3mag
nalich8524
radatailless
xobby18
И.Д.1065
secretary
starabanov
Nastyaches4
Владимирович
vardartem876