Угол 1 примем за a, а угол 2 за b, и так как сумма смежных углов равен 180, получим: a-b= 32 a+b= 180, сложив получим: 2a= 212 a= 106 (угол 1) подставим: 106-b= 32 b= 106-32 b= 74 (угол 2) ответ: 106 и 74
геннадиевна2001
07.08.2021
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник авс. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вм и секущей ав углы под номером 2 - равные накрестлежащие при прямых ас и вм и секущей вс если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны
mikhail
07.08.2021
C1, В1, А1 - середины сторон АВ, АС и ВС соответственно (АА1, ВВ1, СС1 - медианы)==> C1А1, А1В1, С1В1 - средние линии треугольника АВС, а средние линии в два раза меньше сторон треугольника : ВА/В1А1 = СА/С1А1= ВС/В1С1 = 2 ∆А1В1С1 подобен ∆АВС (по трем сторонам) и коэффициент их подобия k = ВА/В1А1 = 2
аналогично и с ∆ А1В1С1 ∆А1В1С1 будет тоже подобен ∆А2В2С2 (по трем сторонам) так как стороны ∆А2В2С2 будут средними линиями ∆А1В1С1 и коэффициент их подобия тоже будет равен k1 = 2 (в таком отношении находится сторона треугольника к параллельной ей средней линии) ∆АВС подобен ∆А1В1С1, а ∆А1В1С1 подобен ∆А2В2С2 ==> ==> ∆АВС подобен ∆А2В2С2 коэффициент их подобия подобия k2 = k1*k = 2*2 = 4
a-b= 32
a+b= 180, сложив получим:
2a= 212
a= 106 (угол 1)
подставим:
106-b= 32
b= 106-32
b= 74 (угол 2)
ответ: 106 и 74