Задача решается проще, если вспомнить, что медианы в точке пересечения (т. е. все три медианы в любом треугольнике пересекаются внутри него строго в одной точке - это центр тяжести треугольника). Так вот эти медианы делятся в точке пересечения в соотношении 2 к 1, считая от вершины. Значит ВО=15*2/3=30/3=10 см, СО=18*2/3=6*2=12 см.
ОВ1=15/3=5 см, ОС1=18/3=6 см. Теперь нужно вспомнить теорему Пифагора. Треугольник ВОС - прямоугольный, значит ВС - гипотенуза.
Треугольник ВОС1 - тоже прямоугольный, так как угол С1OB - прямой. Доказывается так.
- как развернутый угол.
По теореме Пифагора из треугольника находим гипотенузу ВС1.
Заметим, что BC1 - половина АВ по определению медианы СС1.
Треугольник B1OC - прямоугольный, так как угол B1OC - прямой, как вертикальный к углу С1OB. Та же теорема Пифагора, чтобы вычислить гипотенузу В1С.
B1C=13 см.
Заметим также, что В1С - половина АС. Значит АС=26 см.
Вычислим периметр АВ.
Поделитесь своими знаниями, ответьте на вопрос:
Упрямоугольного треугольника один катет равен 8 см а синус противолежащего ему угла равен 0, 8 найдите гипотенузу и другой катет
sinα=0,8
sinα=α/с, тогда с=α/sinα=8/0,8=10 см
По Теореме Пифагора :
ВС= √АС2-АВ2=√100-64 = √36=6 см
ответ: АС= 10 см, ВС=6см