а). Возможно, так: прямоугольный параллелепипед, с гранью максимальной площади, в качестве основания.
б). Три блока, уложенные по ширине, образуют правильную четырехугольную призму, одинаково устойчивую во всех направлениях, перпендикулярных граням призмы. Однако, так как три блока в этаже никак между собой не связаны, то для дополнительной устойчивости конструкции используется чередование укладки блоков с поворотом на 90° в каждом следующем этаже.
в). Измерения игрового блока, шириной 2 см:
ширина (b): 2 см
длина (a): 6 см
высота (h): 1 см
г). площадь поверхности такого блока:
S(пов.) = 2 · (ab + ah + bh) = 2 · (6·2 + 2·1 + 6·1) = 40 (см²)
д). Предполагая, что в начале игры в башне 18 этажей по 3 блока в каждом, - площадь полной поверхности башни:
S(п.п.) = 2 · (6·6 + 6·18 + 6·18) = 504 (см²)
Точки А(0;4) и В(-2;0) принадлежат искомой прямой. Уравнение прямой в общем виде: Аx+By+C=0. Подставим в уравнение значения координат:
В*4 +С =0 (1) и -2*А+С=0 (2). Имеем систему из двух уравнений. Выразим из них коэффициенты А и В через С : В= - С/4, А= С/2 и подставим их в уравнение прямой, сократив на С.
(1/2)*x +(-1/4)*y +1 =0 => 2x -y +4 =0 - искомое уравнение в общем виде.
y = 2x+4 - искомое уравнение с угловым коэффициентом.
Или то же самое через формулу для прямой, проходящей через две точки:
(x-x1)/(x2-x1) = (y-y1)/(y2-y1) =>
(x-0)/-2 = (y-4)/-4 => -4x = -2y + 8 => 2x - y +4 =0. Это ответ.
Поделитесь своими знаниями, ответьте на вопрос:
Как можно быстро. в треугольнике abc проведены биссектрисы ad и de, точка пересечения является o. найдите угол c, если угол aob= 140 градусам