В правильном тетраэдре ABCD точка M - середина BС. Найдите угол между прямыми AM и BD.
Прямая BD пересекает плоскость (ABC) в точке, не лежащей на прямой AM - прямые AM и BD скрещиваются.
Угол между скрещивающимися прямыми - угол между параллельными им пересекающимися прямыми.
Проведем MN||BD
∠AMN - искомый угол.
Правильный тетраэдр, все грани - правильные треугольники.
Пусть все ребра равны а
N - середина CD (т Фалеса)
MN=a/2 (средняя линия)
AM=AN =a√3/2 (медианы в равностороннем треугольнике)
△MAN - равнобедренный
cos(AMN) =MN/2AM =2a/4a√3 =√3/6
∠AMN =arccos(√3/6)
ответ: я тебе пример привела
озглянемо трикутник АМС. Сумка кутів трикутника дорівнює 180°, тоді ∠МАС+∠МСА+∠АМС=180°.
Сума суміжних кутів дорівнює 180°. Кути АMВ i AMC суміжні. Відомо, що ∠АМВ=117°, отже ∠АМС=180°-117°=63°
Бісектриса ділить кут навпіл отже ∠ВАС= ∠ВАМ+ ∠МАС=2∠МАС.
Трикутник АВС рівнобедрений тому кути при основі рівні тобто ∠ВАС=∠ВСА, отже оскільки ∠ВАС=2∠МАС, то і ∠ВСА=2∠МАС
Звідси ∠МАС+2∠МАС+63°.=180°.
3∠МАС=180°-63°
3∠МАС=117°
∠МАС=39°
∠ВАС=∠ВСА= ∠ВАМ+ ∠МАС=2∠МАС=2*39°=78°
∠АВС=180°-78°-78°=24°- за т. про суму кутів трикутника.
Відпповідь: ∠АВС=24°, ∠ВАС=∠ВСА=78°
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
10)в прямоугольный треугольник вписана окружность. найдите периметр треугольника, если гипотенуза треугольника равна 44 см, а радиус окружности равен 6 см. заранее