Пусть треугольники не равны. Отсюда следует, что одновременно. Иначе треугольники были бы равны по первому признаку.
Пусть Δ A1B1C2 – треугольник, равный Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Треугольники A1C1C2 и B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1Dи B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точкуD прямой C1C2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
Пусть треугольники не равны. Отсюда следует, что одновременно. Иначе треугольники были бы равны по первому признаку.
Пусть Δ A1B1C2 – треугольник, равный Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Треугольники A1C1C2 и B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1Dи B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точкуD прямой C1C2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
Поделитесь своими знаниями, ответьте на вопрос:
Меньшая боковая сторона прямоугольной трапеции равна 5 см. найти площадь трапеции если её основание равны 7 и 13 см.