director3
?>

Уравнение круга (х-3)^2+(y+5)^2=16.Найти радиус круга и координаты его центра

Геометрия

Ответы

Марина1101

координаты центра (3;-5), радиус 4

Объяснение:

В общем виде уравнение окружности выглядит как

(x-x_0)^2+(y-y_0)^2=R^2

Где х0 и у0 это координаты центра, а R - радиус

В нашем случае

(x-3)^2+(y+5)^2=16\\(x-3)^2+(y-(-5))^2=4^2\\x_0=3, y_0=-5, R=4

Получаем координаты центра (3;-5), радиус 4

kot271104
Сгачала найдём координаты вершин получененного треугольника А1В1С1.Так как симметрия относительно точки А ,точки А1 и А совпадут.ПО определению центральной симметрии АВ=А1В и АС=АС1 будет.
То есть А будет серединной точки отрезка ВВ1 И СС1.
Тогда Координаты точки А, Ви В1 связаны формулой ха=(хв+хв1)/2 и уа=(ув+ув1)/2.
, где (ха, уа) координаты точки А и соотвественно (хв; ув)-точки В, (хв1; ув1)-
точки В1.
Найдём координаты В1.
3=(-1+хв1)/2, получим хв1=6+1=7.
1=(4+ув1)/2, получим ув1=2-4=-2.

Координаты В1 (7;-2).
Точно так же находим координаты С1.
3=(-2+хс1)/2, отсюда хс1=6+2=8.
1=(-2++ус1)/2, отсюда ус1=4.
Координаты С1 (8; 4).
На координатной плоскости строим треугольники, зная координаты их вершин.
15 ! постройте треугольник,симметричный треугольнику abc относительно точки а,если а(3; 1) ,в(-1; 4)
tashovairina
Параллельная гипотенузе прямая отсекает от исходного треугольника подобный ему. 
Пусть площадь исходного треугольника будет S₁, а меньшего S₂ 
Так как площади частей, на которую треугольник разделился, равны между собой, то площадь меньшего треугольника равна половине площади исходного, 
Площади подобных фигур относятся как квадрат коэффициента их подобия. 
Пусть коэффициент подобия сторон=k
S₁:S₂=2 (по условию)
Отношение площадей треугольников= k² 
k² =2
Периметры подобных фигур относятся как их линейные измерения.
Коэффициент подобия сторон и периметров треугольников
 k=√2 
Р₁:Р₂=√2 
Гипотенуза по т. Пифагора=√(3²+4²) =5 
Р₁=3+4+5=12
12:Р₂=√2Р₂=12:√2 
Умножив числитель и знаменатель дроби на √2, получим =12√2):√2*√2=6√2 
ответ:
Периметр меньшего треугольника 6√2
-----------------
Определение: Симметрия относительно точки или центральная симметрия - это такое свойство геометрической фигуры, когда любой точке, расположенной по одну сторону центра симметрии, соответствует другая точка, расположенная по другую сторону центра.

Построить треугольник, симметричный относительно точки, расположенной внутри него, значит построить треугольник, все вершины которого находятся на таком же расстоянии от данной точки, как и вершины исходного, но по другую сторону от неё.
Для этого через каждую вершину и точку О проводим прямые, на которых откладываем расстояние, равное расстоянию от вершины до точки, и затем соединяем концы образовавшихся отрезков.  
Построение см. во вложении. 

1.катеты прямоугольного треугольника равны 3 см и 4 см. параллельно гипотенузе проведена прямая, кот

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Уравнение круга (х-3)^2+(y+5)^2=16.Найти радиус круга и координаты его центра
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nordwokintos4
selena77
Андреевич
Aleksandr556
olgavlad199
Olesyamilenina8
baulinanatalia7201
Максим Павел
andreykrutenko
dmitryshigin
ирина_Андреевич1634
РостиславовичЮлия1147
grachevakaterina
Yuliya1693
Svetlaru70