Восновании прямой призмы лежит равнобедренная трапеция с боковой стороной 5 см, и основаниями 2 см и 8см. боковое ребро призмы равно 6см. найти площадь полной поверхности призмы
Дана прямая призма, в основании которой лежит равнобедренная трапеция АВСД с боковой стороной 5 см, и основаниями 2 см и 8 см. Боковое ребро призмы равно 6 см.
Проекция бокового ребра на нижнее основание равна:
АВ1 = (8-2)/2 = 6/2 = 3 см.
Если гипотенуза 5 см, а один катет 3 см, то второй катет (это высота трапеции) равен 4 см (по Пифагору).
Площадь So основания равна:
So = ((2+8)/2)*4 = 20 см².
Периметр Р трапеции равен:
Р = 2*5 + 2 + 8 = 20 см.
Площадь Sбок боковой поверхности равна:
Sбок = PH = 20*6 = 120 см².
Площадь S полной поверхности призмы равна:
S = 2So + Sбок = 2*20 + 120 = 160 см².
Xeniya91
24.07.2020
В прямоугольном треугольнике АВС угол С - прямой, D, E и F - точки касания вписанной в треугольник окружности. AD=AE, CD=CF и BE=BF как отрезки касательных, проведенных из одной точки. Тогда АЕ=АС-DC, а ВЕ=СВ-СF. Но СD=CF=4, так как СDOF - квадрат (радиусы вписанной окружности перпендикулярны касательным в точках касания), Значит АЕ=АС-4, ВЕ=СВ-4, АВ=АЕ+ВЕ=АС-4+СВ-4. А так как АВ=26(дано), имеем: АС-4+СВ-4=26. Отсюда АС+СВ=34. Периметр треугольника равен АС+СВ+АВ=34+26=60. ответ: периметр треугольника равен 60.
Vasilii1891
24.07.2020
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Восновании прямой призмы лежит равнобедренная трапеция с боковой стороной 5 см, и основаниями 2 см и 8см. боковое ребро призмы равно 6см. найти площадь полной поверхности призмы
Дана прямая призма, в основании которой лежит равнобедренная трапеция АВСД с боковой стороной 5 см, и основаниями 2 см и 8 см. Боковое ребро призмы равно 6 см.
Проекция бокового ребра на нижнее основание равна:
АВ1 = (8-2)/2 = 6/2 = 3 см.
Если гипотенуза 5 см, а один катет 3 см, то второй катет (это высота трапеции) равен 4 см (по Пифагору).
Площадь So основания равна:
So = ((2+8)/2)*4 = 20 см².
Периметр Р трапеции равен:
Р = 2*5 + 2 + 8 = 20 см.
Площадь Sбок боковой поверхности равна:
Sбок = PH = 20*6 = 120 см².
Площадь S полной поверхности призмы равна:
S = 2So + Sбок = 2*20 + 120 = 160 см².