1.Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.
Решение.
Треугольники HOBи KOB равны, т. к. являются прямоугольными с общей гипотенузой и равными катетами, значит, HB=KB=3
PABC=AC+CB+AH+HB=2CB+2HB=16+6=22
ответ: 22
2. В равнобедренный треугольник АВС с основанием ВС вписана окружность. Она касается стороны АВ в точке М. Найдите радиус окружности, если АМ = 8 и ВМ = 12.
S=1/2p*r
r=2s/p
Т.к треугольник ABC-равнобедренный, то AB=AC=30
По свойству касательных: АМ=АЕ=8, СЕ=СК=12,ВМ=КВ=12,значит ВС=24
По формуле Герона S треугольник = в корне p(p-a)(p-b)(p-c)
Поделитесь своими знаниями, ответьте на вопрос:
Решить прямоугольные треугольники1. b=84 β=67гр.а=? с=? α=? гр.2. с=30 α=53гр.а=? b=? β=? гр.
Объяснение:
1. 3) (неравенство треугольника);
2. Т.к. CD можно рассматривать как секущую к прямым BC и AD, то доказательство параллельности AD и BC сводится к нахождению каких-нибудь особых пар углов, которые при параллельности прямых дают определенное значение. Например, можно сказать, что т.к. угол ADC = 15° + 75° = 90°, а угол BCD равен также 90°, то сумма BCD и ADC равна 180. Эта пара углов называется внутренние односторонние. Доказывается, что если их сумма равна 180° (как в нашем случае), то прямые, которые пересекаются секущей, параллельны. То есть AD║BC.