СМ : МК : КА = 2 : 3 : 2, т.е. СМ - две одинаковые части, МК - три такие же части, а КА - 2 части. Тогда
СМ : СК : СА = 2 : 5 : 7
Если прямая параллельна стороне треугольника, то она отсекает треугольник, подобный данному, значит
ΔМСТ подобен ΔАСВ и коэффициент подобия равен:
k₁ = CM : CA = 2 : 7
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Smct : Sabc = 4 : 49
Smct = 4 · 98 / 49 = 8 см²
ΔКСР подобен ΔАСВ,
k₂ = CK : CA = 5 : 7
Skcp : Sacb = 25 : 49
Skcp = 25 · 98 / 49 = 50 см²
Skmtp = Skcp - Smct = 50 - 8 = 42 см²
Sakpb = Sacb - Skcp = 98 - 50 = 48 см²
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.
Поделитесь своими знаниями, ответьте на вопрос:
Иесли можно с объяснением как сделали? заранее за ! 1)найдите координаты середины отрезка ав, если а (4; -3), в(-2; 1 2)докажите что четырехугольник, координаты вершин которого равны (-1; -; -; -, 1), является параллелограммом, и найдите координаты точки пересечения его диагоналей. разобраться. я руки . ^-^ '-' :