Очень легко показать, что внешний угол в правильном многоугольнике равен центральному углу в описанной окружности, опирающемуся на сторону. В самом деле, угол многоугольника равен 180 - Ф, если провести из центра радиусы в соседние вершины, то угол при основании в полученном равнобедренном треугольнике равен (180 - Ф)/2, сумма 2 углов при основании 180 - Ф, поэтому угол при вершине Ф.
Поскольку при Ф = 30 градусов число сторон N = 360/Ф = 12, то у в задаче задан правильный 12-угольник. Радиуc описанной окружности R = 4, и площадь каждого из 12 уже упоминавшихся треугольников равна R^2*sin(30)/2 = 4; площадь всего 12-угольника 4*12 = 48;
Начертим острые углы произвольной величины и обозначим их α и β, соблюдая условие α < β .
Начертим окружность с центром О. От вершин О1 и О2 данных углов как из центра тем же радиусом отметим т. А и В на сторонах угла β, точки С и Т на сторонах угла α. Циркулем измерим дугу АВ и два раза отложим её на первой окружности. Угол СОВ=2β
По общепринятому проведем биссектрисы О1k угла β и О2m угла α. Дугу Вk, равную половине угла β, отложим от т.В на первой окружности (прибавим к уже построенному углу СОВ).
Отложим на той же окружности дугу Сm, равную половине угла α, от т.С в пределах угла СОА. Получившийся угол mОk равен требуемому по условию .2,5 β - 0,5 α (на рисунке он окрашен голубым цветом)
Поделитесь своими знаниями, ответьте на вопрос:
На данной окружности найдите точки равноудаленные от концов данной хорды
4. Это точки С; К; О; D. Точка К не отмечена на рисунке. Это точка пересечения хорды АВ и диаметра СD.
Карандашом отмены отрезки, которые доказать равенство треугольников