ayanrsadykov
?>

Через вершину конуса проведена плоскость под углом 45 к плоскости основания. эта плоскость пересекает основание по хорде, которая видна из центра основания под углом 60. найдите объем конуса, если расстояние от вершины конуса до хорды равно 6 см

Геометрия

Ответы

milleniumwood633

V = 24√2·π.

Объяснение:

Сечение конуса данной плоскостью имеет вид равнобедренного треугольника АSВ, высота которого SН = 6 см (дано) наклонена под углом 45° к плоскости основания конуса (дано). => Прямоугольный треугольник SОН равнобедренный и SО = ОН. По Пифагору: SH² = 2·SO² или 36 = 2·SO² => SО = ОН = 3√2 см.  

По теореме о трех перпендикулярах ОН перпендикулярна АВ => АН=НВ по свойству перпендикуляра к хорде из центра окружности. Треугольник АВО равнобедренный и ОН - высота, медиана и биссектриса угла АОВ = 60° (дано) => ∠AОН = 30°. => АО = 2·АН. По Пифагору А0² = АH²+OН² или З·АH² = OН² => З·АН² = 18, АН = √6, АО = 2√6 см. АО = R (радиус основания конуса). Тогда объем конуса равен V = (1/3)·Sо•Н или  

V = (1/3)·π·24·3√2 = 24√2·π.


Через вершину конуса проведена плоскость под углом 45 к плоскости основания. эта плоскость пересекае
НатальяРуктешель472
Обозначим через ВК высоту, опущенную на сторону АС.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.
Plyushchik_Nikita
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Через вершину конуса проведена плоскость под углом 45 к плоскости основания. эта плоскость пересекает основание по хорде, которая видна из центра основания под углом 60. найдите объем конуса, если расстояние от вершины конуса до хорды равно 6 см
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

OlgaVasilevna
Yelena_Gennadevna
kamimoza
gon4arovanat6
alekseev13602
kosharikclub
Александр Елена1290
zerckaln
Kuznetsova1639
ktatarinova
Горностаева831
textildlavas21
gubernatorov00
menametov
Nataliatkachenko1