Объяснение:
Обособленными членами предложения называются:
1) члены предложения, относящиеся к одному и тому же члену предложения, отвечающие на один вопрос, выполняющие одинаковую синтаксическую функцию; 2) члены предложения, выделяемые по смыслу и интонационно; 3) все члены предложения, кроме подлежащего и сказуемого.
Обособленные обстоятельства выражаются одиночными деепричастиями или деепричастными оборотами, сравнительными оборотами, существительными в косвенных падежах с предлогами. Обособленные уточняющие обстоятельства могут быть также выражены наречиями.
Дополнения в предложении могут обособляться, а могут не обособляться – в зависимости от того, что хотел передать автор.
Чаще всего обособляются обороты, которые условно называются дополнениями, выраженными существительными с предлогами «кроме», «вместо», «за исключением», «исключая», «помимо» и др. Такие дополнения имеют расширительное или, наоборот, ограничительное значение: Поездка ей в целом понравилась, за исключением этих двух происшествий.
Сравнительные обороты интонируются в речи, а на письме обособляются – выделяются запятыми. 1. Сравнительные обороты, начинающиеся сравнительными союзами (как, будто, словно, точно, чем, нежели, как будто и др.), выделяются (или отделяются) запятыми.
Сравнительный оборот, образующий именную часть составного сказуемого, или тесно связанный со ним по смыслу, не обособляется: Пьеса написана как комедия. ... Сравнительный оборот, представляющий собой устойчивое сочетание, не обособляется: После этих слов он вскочил как ужаленный.
Поделитесь своими знаниями, ответьте на вопрос:
80 ! четырёхугольник abcd - параллелограмм, ae и cf - перпендикулярны к плоскости acd. найдите угол между плоскостями ade и cbf. (с решением и рисунком)
В правильном восьмиугольнике противолежащие стороны параллельны.
М₂М₃ ll М₆М₇, значит М₃М₆⊥М₆М₇, значит тр-ник М₃М₆М₇ прямоугольный.
Аналогично тр-ник М₃М₇М₈ прямоугольный. Эти треугольники равны по равным катетам М₆М₇ и М₇М₈ и общей гипотенузе М₃М₇, значит S(М₃М₆М₇)=S(М₃М₆М₇М₈)/2=√2/2.
В тр-ке М₃М₆М₇ М₆О - медиана (О - точка пересечения больших диагоналей восьмиугольника, его центр), значит S(М₆ОМ₇)=S(М₃М₆М₇)/2=√2/4.
Площадь восьмиугольника: S₈=8·S(М₆ОМ₇)=8·√2/4=2√2 - это ответ.