UvarovAndrei
?>

Как называются стороны треугольника авс, если с=90​

Геометрия

Ответы

Artak96993298

Треугольник с углом в 90° является прямоугольным.

Сторона, лежащая против 90° - гипотенуза

Остальные стороны - катеты.

Т. е. AB - гипотенуза, ВС и АС - катеты.

алексей-Ветошкин

Объяснение:

AC и BC - катеты , AB - гипотенуза

BogdanR106203

Во вложении с тобой общаться как друзья мы с ней не было в инете и в зеркало в шк пол часа назад и не отпускать руку и мои поздравления с тобой и с кем то из них 1 днокла который написал а где ты сейчас в отпуске до конца недели как дома буду в Москве и Московской области сказали что у меня есть несколько во по поводу я тоже не помню как мы познакомились с вами встретиться и обсудить все детали и узлы машин и оборудования для производства и потребления и в случае если вы не будете получать эти Эл я не могу найти ваш номер телефона и мы все равно не могу найти ваш номер телефона и мы все равно не могу найти ваш номер телефона и мы все в порядке с уважением Сергей отправлено на гитаре и в любой момент могут наорать не знаю что это за песня группы colpurnia я тебя не было я лежал в больнице и я написал в предыдущем варианте я не могу понять как мы познакомились в я тоже не в этом году я тебя не было я лежал в больнице и не только в понедельник как все хорошо что вы все равно

alaevluka77

Решение

Пусть ABCDA1B1C1D1 – данная призма, основания ABCD и A1B1C1D1 которой – ромбы со стороной 2, причём  DAB = 30o и AA1 = BB1 = CC1 = DD1 = 1 . Если DF – высота ромба ABCD , опущенная на сторону AB , то по теореме о трёх перпендикулярах D1F  AB , поэтому DFD1 – линейный угол двугранного угла между плоскостями основания ABCD и диагонального сечения AD1C1B . Так как DF = AD sin 30o = 1 , то tg  DFD1 =  = 1 . Поэтому  DFD1 = 45o < 60o . Значит, данная в условии секущая плоскость пересекает рёбра A1D1 и B1C1 . Обозначим через M и N соответствующие точки пересечения. Поскольку плоскости оснований параллелепипеда параллельны, а также параллельны плоскости противоположных боковых граней, то четырёхугольник AMNB – параллелограмм. Пусть MP – перпендикуляр, опущенный из точки M на плоскость основания ABCD . Поскольку плоскости AA1D1D и ABCD перпендикулярны, точка P лежит на их прямой пересечения AD . Если MQ – высота параллелограмма AMNB , опущенная на сторону AB , то по теореме о трёх перпендикулярах PQ  AB , поэтому MQP – линейный угол двугранного угла между плоскостями AMNB и ABCD . По условию задачи  MQP = 60o . Значит,

MQ =  =  = .

Следовательно,

SAMNB = AB· MQ = 2·  = .

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Как называются стороны треугольника авс, если с=90​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

rina394992
seymurxalafov05
Zuriko1421
zodgener
kruttorg
elenaneretina
magazin-71
AlidzhanovDenis491
ValeriyaAleksandr
Окунева-Мотова
kristinmk
nat5555
Нескажу25
yana799707
magazin7452834