1. Потому что по одному катету и гипотенузе всегда можно определить третий катет (по теореме Пифагора), а по одному острому углу всегда можно найти второй острый угол (т.к. сумма всех углов 180°).
2. Первый признак: по двум катетам (по теореме Пифагора можно найти гипотенузу, после чего утверждать о равенстве треугольников по трем сторонам).
Второй признак: по катету и гипотенузе (по теореме Пифагора можно найти второй катет, после чего утверждать о равенстве треугольников по трем сторонам).
Третий признак: по гипотенузе и острому углу (можно найти третий угол, после чего утверждать о равенстве треугольников по стороне и двум прилежащим углам).
Четвертый признак: по катету и острому углу (можно найти третий угол, после чего утверждать о равенстве треугольников по стороне и двум прилежащим углам).
3. Да, если речь идет об остром угле. В таком случае прямоугольные треугольники равны по четвертому признаку (по катету и острому углу).
4а. Нет, равенства углов недостаточно для равенства треугольников.
4б. Такое равенство невозможно.
В треугольнике ABC сторона BC является катетом, AB -- гипотенузой, поэтому AB > BC. В треугольнике DCE сторона CE является катетом, DE -- гипотенузой, поэтому DE > CE.
По условию AB = CE и BC = DE. Тогда из первого неравенства AB > BC следует, что CE > DE, что противоречит второму неравенству.
4в. Да, треугольники будут равны по двум катетам (первый признак).
4г. Нет, равенства гипотенузы недостаточно для равенства треугольников.
Треугольник abd подобен adc.
Объяснение: 1. Угол b равен углу DAC т.к это р/б треугольник и можно найти углы A и C (180-36=144, делим на 2 так как углы равны, равняется 72). AD- биссектриса и делит угл A на 2 (72/2=36, значит BAD и DAC=36)
2. Угол C равен углу BDA так как треугольник BAD - р/б. Так как угл BAD=36 и ABD=36 можно найти BDA (180-36-36=72), а угл C=72 по первому пункту (так как угл A равен углу C как р/б треугольник).
Получается что Угол B=DAC и угол C=BDA
Значит подобны по первому признаку по двум углам
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть площу повної поверхні циліндра висота якого дорівнює діаметру його основи і дорівнює 8 см
..........................