1. Представим треугольник АВС со сторонами а=13, b=11, с =6 и соответствующими углами α, β, γ. Во-первых, ΔАВС - разносторонний по условию.
Теорема косинусов:
с^2= a^2 + b^2 - 2abcosγ
Следствия из теоремы косинусов:
а) если с^2 < a^2 + b^2, => γ<90° (острый угол)
b) c^2= a^2 + b^2, => γ=90° (прямой)
c) c^2 > a^2 + b^2, => γ>90° (тупой)
Проверим стороны:
1) 13^2 ... 11^2 + 6^2; 169 > 121 + 36: 169 > 157; => α > 90°
Получили, что угол альфа - тупой. Из этого следует, что ΔАВС - тупоугольный, углы бета и гамма - острые.
Итак, АВС - разносторонний тупоугольный треугольник.
2. ΔАВС: АС=28см, ∠АВС=60°, АВ/ВС=8/5
Пусть АВ=8х, а ВС=5х, тогда по теореме косинусов:
28^2 = (8x)^2 + (5x)^2 - 2*8x*5x*cos(∠ABC)
784 = 64x^2 + 25x^2 - 40x^2; 49x^2 = 784; x^2=16; x=4см - 1 часть
АВ=8х= 8 частей= 32см, ВС=5х= 5 частей= 20см
3. НОГА - параллелограмм: НО ║ ГА, НА ║ ОГ; НО=ГА=1, НА=ОГ=√3; = √7 - диагональ;
По теореме косинусов найдём угол ∠НОГ:
7 = 1 + 3 - 2√3соs(∠НОГ)
соs(∠НОГ)=3/-2√3=-√3/2, значит по формуле привидения:
cos(∠НОГ)= -(cos30°) = cos(180°-30°) = cos150°, НОГ=150°
Следовательно, ∠НАГ=150°, ∠ОНГ=∠ОГА=30° (свойства параллелограмма)
Найдём вторую диагональ по свойству параллелограмма:
d₁²+d₂²=2(a²+b²), где d - диагонали
7 + d₂²=2(1+3)
d₂²= 1; d₂= 1
Поделитесь своими знаниями, ответьте на вопрос:
Сравни длины отрезков , выходящих из вершины P , если угол O=60° ; угол T=40° . Запиши отрезки в порядке возрастания их длин
Доказательство:
1. Необходимо опустить перпендикуляры BK и CF на прямую, которая содержит сторону AD.
2. Рассмотрим ΔBDK:
По теореме Пифагора:
BD²=KD²+BK²
3. Рассмотрим ΔACF:
По теореме Пифагора:
AC²=AF²+CF²
4. Складываем два выражения в столбик:
BD²=KD²+BK²
+
AC²=AF²+CF²
=
AC²+BD²=KD²+BK²+AF²+CF²
По свойству высот в параллелограмме, BK=CF ⇒ AC²+BD²=2BK²+KD²+AF²
5. Рассмотрим ΔABK:
По теореме Пифагора:
BK²=AB²-AK²
6. Так как KD=AD-AK, AF=AD+FD ⇒ AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+FD)²
7. BK=CF, AB=CD ⇒ ΔABK=ΔDCF - по свойству катета и гипотенузы ⇒ AK=DF ⇒
AC²+BD²=2(AB²-AK²)+(AD-AK)²+(AD+AK)²
AC²+BD²=2AB²-2AK²+AD²-2AD*AK+AK²+AD²+2AD*AK+AK²
AC²+BD²=2AB²+2AD²
AC²+BD²=2(AB²+AD²)
Что и требовалось доказать.