а) От М до АD ровно столько , сколько от M до точки N - середины АD,
потому что MN перпендикулярно к AD.
KN =AB=12 MK=5
MN -гипотенуза тр-ка MNK, равна корню из квадратов катеров KN и MK,
то есть MN=13.
б) BM - гипотенуза BMK, ВК=АD / 2 =5 MK=5
BM= корень(50) = 5корень(2)
Площадь АМВ = ВМ* AB /2 = 5 корень(2) *12/2 = 30корень(2)
Проекция АМВ на плоскость есть тр-к АKB и у них одна длина AB
Площадь АKB / BK = Площадь АMB / MB
отсюда Площадь АKB = Площадь АMB / MB *ВK =30корень(2) / (5 корень(2)) * 5 = 30
Зметим, что треугольник AMB наклонен под 45 градосув к плоскости проекции,
поэтому о и больше в корень(2) раз.
Но можно было и просто посчитать Площадь АKB = AB*BK/2= 12*5/2= 30
в) чтобы определить расстояние надо найти наименьшее расстояние между прямыми.
Из любой точки одной прямой можно опустить перпендикуляр на вторую, и из любой точки второй - перпендикуляр на первую, однако только тогда, когда эти перпендикуляры совпадают, то есть
проведён единственный перпендикуляр, он и окажется наименьшим.
Такой перпендикуляр всегда существует, хоть он иногда имеет нулевую длину, если прямые пересекаются.
В нашей задаче к прямым ВМ и AD, которые сами не параллельны, сушествует обший перпендикуляр AB, он будет и единственным "двойным" перпендикуляром, и самым коротким поэтому, и равен 12. это и будет расстоянием между ВМ и AD.
Поделитесь своими знаниями, ответьте на вопрос:
В треугольнике АВС угол С=90 , CD-высота, CD=4 см, АС=8 см. Найти угол САB.
30°
Объяснение:
sinCAB=CD/AC=4/8=1/2⇒∠CAB=30°