Чтобы построить график функции онлайн:
укажите функцию в поле выше в виде «y = x2 - 3»;
нажмите кнопку «Построить график функции»;
ожидайте результат анализа функции (точки пересечения с осями координат) и график функции под полем задания функции.
При необходимости вы можете построить одновременно графики двух функций онлайн. Для этого нажмите кнопку «Добавить функцию».
В случае построения двух графиков функции будут показаны их точки пересечения.
Таблица обозначений для задания функций
Математическая операция Символ Пример использования
Десятичная дробь Можно и через точку, и через запятую. «2,789» или «2.879»
Сложение «+» x + 1
Вычитание «-» x - 2.5
Умножение «*»(shift + 8) 2 * x
Коэффициент при «x» можно записывать без знака умножения. Например: «2x».
Но при умножении скобок обязательно использовать символ «*».
Правильно: «(2x - 1) * (6.7 - x)».
Деление «/» (знак во на английской раскладке) (x - 1) / 2
Дробь Кнопка «Дробь»
x - 2
10
-
1
2
Модуль Кнопка «Модуль» |x - 2.3|
Возведение в степень Кнопка «Возведение в степень»
или
«^»(shift + 6)
При нажатой кнопке «Возведение в степень» символы попадают в степень. Чтобы вернуться к обычному набору символу, нужно отжать кнопку «Возведение в степень».
Другой задания степени через знак «^». Например: «x^(2)».
Корень Кнопка
«Корень» 2 √(x - 2) — квадратный корень
3 √(2x - 1) — кубический корень
Синус Кнопка
«Синус» sin(x + 1)
Косинус Кнопка
«Косинус» cos(x)
Тангенс Кнопка
«Тангенс» tg(2.5 - x)
Число π (пи) Кнопка
«Число «Пи» sin(x + π) + 2
Логарифм Кнопка
«Логарифм» log2(2x - 1,4)
Натуральный логарифм Кнопка
«Натуральный логарифм» ln(x) - 2
Десятичный логарифм Кнопка
«Десятичный логарифм» lg(2.3 - x)
Основание натурального логарифма (число Эйлера) Кнопка
«Основание натурального логарифма» ex
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Дана прямая треугольная призма, полная поверхность которой равна 145, 8 м^2. Найдите боковую поверхность призмы, если стороны основания равны 10, 8м, 8, 7м, 7, 5м.
2,47м BG=54см, AH=64см. Учите геометрию (мастер ее в школе выучил)
Объяснение:
Поскольку AH, BG, CF, DЕ параллельны, то ABGH, BCFG, CDEF - трапеции. Раз EF=FG=GH, то и DC=BC=AB по теореме Фалеса. Кроме того, CF является средней линией трапеции BDEG, а BG - средней линией трапеции ACFH. Средняя линия трапеции равна полусумме оснований.
EF=FG=GH=10cm
AB=DC=CD=7cm
DE=34cm, CF=44cm Тогда BG=54cm (CF=(DE+BG)/2, BG=2CF-DE=2*44-34=54)
2BG=CF+AH, AH=2BG-CF=2*54-44=64cm
AB+BC+CD+DE+EF+FG+GH+AH+BG+CF=7+7+7+34+10+10+10+64+44+54=247см=2,47м