Пишу в ответ, потому что пятая задача полезная, хоть и простая, может, еще кому пригодится. 1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2. 2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°; 3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса. [Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;] То есть 34/13 = (P - 39)/39; P = 141; 4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15; 5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30; Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;
Маринина_Елена
09.08.2021
Проводим прямую, отмечаем на ней точку получаем развернутый угол 180 градусов строим равностонний треугольник (нарисовали пряммую, отложили отрезок, с его концов росчерком циркуля равным построенному отрезку в одной полуплоскости относительно пряммой построили окружности, они пересекутся в третьей точке, получили равносторонний треугольник, каждый угол 60 градусов) проводим биссектриссу угла 60 градусов (получим углы в 30 градусов), задача на построение биссектриссы базовая проводим биссектриссу угла 30 градусов (получим углы в 15 градусов) от вершины развернутого угла откладываем угол равный углу 15 градусов, дополняющий угол (второй угол) будет равный 165 градусам (построить угол равный данному базовая задача).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано вектори: а(-2;8;-4) ib(1;-4; k Приякому значенні k вектори aibКолінеарні?
1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2.
2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°;
3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса.
[Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;]
То есть 34/13 = (P - 39)/39; P = 141;
4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15;
5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30;
Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;