Надеюсь, что все видно.
ответ:Сумма углов,прилежащих к одной боковой стороне трапеции равна 180 градусов
Если угол D равен 60 градусов,то угол С равен
<С=180-60=120 градусов
Диагональ АС отсекла от трапеции равнобедренный треугольник(АВ=ВС) ,а углы при основании АС равны между собой
<ВАС=<ВСА=120-90=30 градусов
<В=180-30•2=120 градусов,тогда
<А=180-120=60 градусов
Вывод-трапеция равнобедренная,т к углы при каждом основании равны между собой
Номер 2
Углы при боковых сторонах трапеции в сумме равны 180 градусов
Трапеция прямоугольная
<S=<M=180-90=90 градусов
Диагональ отсекла от трапеции равнобедренный треугольник,углы при основании которого равны между собой
<RMK=<К=(180-50):2=65 градусов
<R=180-65=115 градусов
Объяснение:
Объяснение:
Проведём высоту к основанию. Основание при этом будет поделено на два равных отрезка, т.к. высота, проведённая к основанию равнобедренного треугольника, является медианой и биссектрисой, отрезки основания равны по 10 см. Получаем прямоугольный треугольник с катетом 10 и гипотенузой 26 (боковая сторона), по теореме Пифагора находим высоту: 26²-10²=x²
676-100=x²
x²=576
x=24 см
Площадь треугольника рассчитывается по формуле ½*высота*основание, к которому она проведена. Подставляем: ½*24*20=240 см²
ответ: высота равна 24 см, площадь — 240 см²
Поделитесь своими знаниями, ответьте на вопрос:
Из точки М, лежащей на окружности с центром О, опущен перпендикуляр МК на диаметр СД. Найдите, СК и ДК, если радиус равен 15, а МД 12 корней из 5
10 и 20.
Объяснение:
Поскольку CD - диаметр окружности (по условию), то треугольник CMD - прямоугольный, в котором МК - высота, проведённая из прямого угла. Тогда точка К делит гипотенузу в таком же отношении, как и катеты этого треугольника. Первый катет MD дан по условию: MD² = 144*5 = 720, тогда второй катет равен √((15*2)² - 720 = √180 = 6√5. Соотношение катетов равно 6√5:12√5 = 10:20. Тогда СК = 10, DK = 20.