Две окружности касаются внешним образом и имеют общую внешнюю касательную. Найдем расстояние между точками касания на прямой.
Отрезки касательных из одной точки равны (синие отрезки). Центры окружностей лежат на биссектрисах углов, образованных касательными. Угол между биссектрисами смежных углов - прямой. Точка касания окружностей лежит на линии центров. Радиусы, проведенные в точку касания, перпендикулярны касательной. Таким образом синий отрезок является высотой из прямого угла и равен среднему пропорциональному проекций катетов, √(R1*R2).
Расстояние между точками касания на прямой равно 2√(R1*R2).
Определения: "Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники. Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость." Объем прямоугольного параллелепипеда - произведение трех его измерений. В нашем случае высота параллелепипеда h равна 2√2 см (как катет, лежащий против угла 30°) Длина основания равна а=4√2*Sin45°=4 см. Ширина основания по Пифагору: b=√[(4√2*Cos30)²-4²]=√(24-16)=2√2 см. V=a*b*h=4*2√2*2√2=32 см³ Это ответ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В четырёхугольнике АВСД, АВ равен СД, угол 3 равен углу 4. 1. Докажите, что треугольник АВД равен треугольнику ВСД 2. Найдите АД, ДС, если АВ равен 10 см, ВС равен 14 см
Две окружности касаются внешним образом и имеют общую внешнюю касательную. Найдем расстояние между точками касания на прямой.
Отрезки касательных из одной точки равны (синие отрезки). Центры окружностей лежат на биссектрисах углов, образованных касательными. Угол между биссектрисами смежных углов - прямой. Точка касания окружностей лежит на линии центров. Радиусы, проведенные в точку касания, перпендикулярны касательной. Таким образом синий отрезок является высотой из прямого угла и равен среднему пропорциональному проекций катетов, √(R1*R2).
Расстояние между точками касания на прямой равно 2√(R1*R2).
В задаче три пары аналогичных окружностей.
AB+BC=AC => 2√(x*25/16) +2√(9*25/16) =2√(9x) <=> 7√x =15 <=> x=225/49