∠DKC = 36°.
Объяснение:
Вот один из вариантов решения:
∠KAD = ∠ABC = 96° как соответственные углы при параллельных AD и ВС и секущей КВ. ∠BAD = 180° - 96° = 74° , ∠BCD = 180° - 48° = 132° (так как углы, прилежащие к боковым сторонам трапеции, в сумме равны 180°).
В треугольнике КВС ∠ВСК = 180° - 96° - 24° = 60° (по сумме внутренних углов треугольника).
Проведем прямую СL, параллельную ВК. АВСL - параллелограмм.
∠BCL = ∠BAL = 74° (противоположные углы параллелограмма). =>
∠LСD = ∠BCD - ∠BCL = 132° - 74° = 48°. =>
Треугольник СLD равнобедренный. => DL = CL = AB.
Тогда AD = AL + LD = AK + AB.
Но и КВ = АК +AВ. => AD = KB. =>
Треугольники КВС и DAK равны по двум сторонам и углу между ними (AD =KB, BC = АК, ∠KAD = ∠KBC).
В равных треугольниках соответствующие углы равны => ∠AKD = ∠BCK = 60°.
Тогда ∠DKC = ∠AKD - ∠AKC = 60° - 24° = 36°.
Поделитесь своими знаниями, ответьте на вопрос:
Определите в каких странах и регионах Северной Америки расположены перечисленные туристические объекты? Ниагарский водопад – Мамонтова пещера – Чичен-Ица – Диснейленд – Вуд-Баффало – Статуя Свободы – Большой Каньон – Вулкан Попокатепетль – Гора Рашмор - Пирамиды Теотиуакана
По теореме косинусов
(2√3)²=6²+х²-2·6·х·cos 30°
12=36+x²-6√3·x=0
x²- 6√3·x+24=0
D=108-96=12
x=(6√3-2√3)/2=2√3 или х=(6√3+2√3)/2=4√3
если х=2√3, то диагональ делит параллелограмм на два равнобедренных треугольника.
Углы параллелограмма 60° и 120°
если х=4√3
то по теореме косинусов ( α - угол параллелограмма , лежащий против диагонали)
6²=(2√3)²+(4√3)²-2·2√3·4√3 ·cos α ⇒ 36=12+48-48·cosα⇒
cosα=0,5
α=60°
второй угол параллелограмма 120°
см. рисунок 2
ответ 120° и 60°