Дано:
Прямоугольный треугольник
Меньший катет-3
Больший катет -4
Найти V-?
S полной поверхности-?
Решение
Тело вращения - прямой конус, где больший катет - высота (Н) конуса, меньший катет - радиус (R) основания конуса, гипотенуза треугольника - образующая (L) конуса.
Сначала нацдем по теореме Пифагора образующую
R² + H² = L²
3² + 4² = L²
L² = 9 + 16
L³ = 25
L = 5 (см)
Площадь боковой поверхности конуса равна произведению числа π на радиус окружности основания и на длину образующей конуса
S = π * R * L
S = π * 3 * 5 = 15π
Объем конуса равен одной трети произведения числа π на квадрат радиуса основания на высоту.
V = 1/3 * π * R² * H
V = 1/3 * π * 3² * 4 = 1/3 * 9 * 4 * π = 12π
ответ: S=15п, V=12п
Поделитесь своими знаниями, ответьте на вопрос:
С циркуля и линейки постройте равнобедренный треугольник по основанию a и биссектрисе b, проведённой к основанию.Решение проведите в 4 этапа:Этап 1: используя свойства равнобедренного треугольника, проведите анализ задачи. Определите, какие построения вам понадобятся.Этап 2: докажите, что полученный треугольник – равнобедренный, с длиной основания a и длиной биссектрисы b.Этап 3: исследуйте, сколько решений имеет задача. Всегда ли она будет иметь решения при различных значениях a и b?
S = 4(7√3+6) см²
Р = 22+4√3(1+√2) см.
Объяснение:
АВCD - трапеция. Опустим высоты ВН и СР на основание AD. В прямоугольном треугольнике АВН катет АН лежит против угла 30° (по сумме острых углов прямоугольного треугольника) и равен половине гипотенузы АВ. Второй катет ВН найдем по Пифагору: ВН=√(АВ²-АН²). Тогда
АН = 4 см. ВН = √(8²-4²) = 4√3 см.
CР = ВН (высота трапеции) => PD = CР (как катеты равнобедренного прямоугольного треугольника (острые углы равны по 45° - дано).
CD = √(2·BH²) = 4√6 см. (по Пифагору).
AD = AH+HP+PD = 4+5+4√3 = (9+4√3) см.
Тогда S = (BC+AD)·BH/2 = (14+4√3)·4√3/2 = (28√3 + 24)см²
Периметр Р = 8+5+4√6+(9+4√3) = 22+4√3(1+√2) см.