Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒АВСМ-равнобедренная и суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см
. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr². Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒КР=6 см, АК=РМ=6:2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора ВК=√(9²-3²)=√18=3√2(см). ВК-высрта трапеции, значит r=(3√2)/2 см.
S(круга)= π ( (3√2)/2 )²=4,5π (см²)
Объяснение:
ермин, введённый Международным астрономическим союзом в 2006[1] году для обозначения объектов Солнечной системы, которые не являются ни планетами, ни карликовыми планетами, ни их спутниками:
Все прочитанные объекты, обращающиеся вокруг Солнца, за исключением спутников, должны быть отнесены к «малым телам Солнечной системы» ... В настоящее время в их список включено большинство астероидов Солнечной системы, большинство транснептуновых объектов (ТНО), а также кометы и прочие малые тела
Распределение кентавров и транснептуновых объектов по расстоянию от Солнца (увеличивается слева направо) и наклонению орбиты (увеличивается снизу вверх)
В настоящее время нет ясности, будет ли проведена для малых тел Солнечной системы нижняя граница размеров или к ним будут отнесены любые объекты до уровня метеороидов.
Естественные спутники, вообще говоря, отличаются от малых тел Солнечной системы только орбитами: они обращаются не вокруг Солнца, а вокруг других объектов Солнечной системы. Крупные спутники отличаются ещё и тем, что пребывают в гидростатическом равновесии (в результате чего имеют круглую форму).
Некоторые из крупнейших малых тел Солнечной системы в дальнейшем могут быть переклассифицированы в карликовые планеты, если в результате дальнейших исследований выяснится, что они находятся в состоянии гидростатического равновесия.
Поделитесь своими знаниями, ответьте на вопрос:
Решить ! в прямоугольном треугольнике авс, с прямым углом с, катет ас=2, гипотенуза ав=4.найдите медиану треугольника, проведенную из вершины в.
pusti budet mediana bd
bc^2=ab^2-ac^2
bc^2=16-4
bc=2√3
cd=1
bd^2=bc^2+cd^2
bd^2=12+1
bd=√13