1) Дано: МE=ED , EF=EC , MD пересекается с CF в точке Е .
Доказать: ΔMEF=ΔDEC .
Решение. Так как МE=ED , EF=EC , ∠MEF=∠CED (как вертикальные) , то треугольники равны по 1 признаку
2) Дано: BC=DC , AB=AD . Док-ть: ΔADC=ΔABC .
BC=DC , AB=AD , AC - общая сторона ⇒ равенство треугольников по 3 признаку
3) Дано: ∠ВАС=∠DAC , ∠ACD=∠ACB . Док-ть: ΔABC=ΔADC . ∠ВАС=∠DAC , ∠ACD=∠ACB , AC - общая сторона ⇒ равенство треугольников по 2 признаку
4) Дано: AB=BC , ∠ABD=∠CBD=90° . Док-ть: ΔABD=ΔCBD.
AB=BC , ∠ABD=∠CBD=90° , BD - общая сторона ⇒
равенство треугольников по 1 признаку .
Поделитесь своими знаниями, ответьте на вопрос:
Запишите обозначение точки P, если её абсцисса равна 0, а ордината 5, аппликата 0. Где лежит точка P?
1) ΔАВС , ∠С=90° , СН⊥АВ , ∠ АСН=60°, ВС=3,6 см . Найти: АВ=?
Рассм. ΔАСН. ∠А=90°-∠АСН=90°-60°=30° .
Рассм. ΔАВС. Катет ВС=3,6 см лежит против угла в 30°, значит он равен половине гипотенузы, то есть ВС=1/2*АВ ⇒ АВ=2*ВС ,
АВ=2*3,6=7,2 (см) .
ответ: АВ=7,2 см .
2) ΔАВС , ∠С=90° , ∠С:∠А=4:2 , СН⊥АВ , ВН=3 см . Найти АН .
∠А+∠С=90° , ∠С=4k , ∠A=2k , 4k+2k=90° , 6k=90° , k=15° .
∠C=4*15°=60° , ∠A=2*15°=30° .
Рассм. ΔВСН. ∠ВНС=90° , ∠ВСН=90°-∠В=90°-60°=30° .
Катет ВН=3 см лежит против угла в 30°, тогда гипотенуза в 2 раза больше этого катета: ВС=2*3=6 см.
Из теоремы Пифагора: СН=√(ВС²-ВН²)=√(36-9)=√27=3√3 (см)
Рассм. ΔАСН. ∠АНС=90° , ∠А=30° ⇒ катет СН лежит против угла
в 30° ⇒ АС=2*СН=2*3√3=6√3 (см) .
АН=√(АС²-СН²)=√(36*3-9*3)=√81=9 (см)
ответ: АН=9 см .