Если прямая не находится в плоскости, то она может пересекать её или быть параллельной ей. Тогда плоскости могут пересекатся или быть параллельными, последнее далеко не всегда верно, но этому ни чего не противоречит, по условию, так что это возможно.
ответ: б) параллельны или пересекающиеся.
1.2.
По признаку параллельности прямой и плоскости - мы имеем множество прямых, которые параллельны второй плоскости и они лежат в первой плоскости эта плоскость так же параллельна второй плоскости, ведь если она пересечёт, то найдётся такая прямая, которая так же пересечёт, а как мы выянили все прямые параллельны.
ответ: б) параллельны.
2.
По определению скрещивающиеся прямые это такие прямые, которые не находятся в одной плоскости. Пересекающиеся прямые всегда лежат в одной плоскости (одно из следствий из одной аксиомы стереометрии). Прямые параллельны в пространстве, если они лежат в одной плоскости и не пересекаются (определение).
2.1.
ответ: а) скрещивающиеся.
2.2.
ответ: в) параллельны или пересекающиеся.
Объяснение:
zipylin
20.06.2021
Sin = отношение противолежащего катета к гипотенузе cos = отношение прилежащего катета к гипотенузе tg = отношение противолезащего катета к прилежащему Центральный угол равен дуге, на которую он опирается вписанный угол равен половине дуги, на которую он опирается Теорема Пифагора: Квадрат гипотенузы равен сумме квадратов катетов радиус - прямая, проведенная из центра окружности к окружности центр. угол(1) и впис.угол (2), касательная к окружности(3) - на картинке
Треугольники бывают: равнобедренные, равносторонние, прямоугольные и тупоугольные 4 замечательные точки: точка пересечения высот, точка пересечения медиан, точка пересечения биссектрисс, серединный перпендикуляр в равнобедренном треугольнике две стороны равны, и углы при основании равны в прямоугольном треугольнике один из углов равен 90°
все, что смогла
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прямая AC проходит через центр О окружности, ∠MAO=∠OCM=30°. Докажите, что прямая CM является касательной к данной окружности.
ответ:1.1.
Если прямая не находится в плоскости, то она может пересекать её или быть параллельной ей. Тогда плоскости могут пересекатся или быть параллельными, последнее далеко не всегда верно, но этому ни чего не противоречит, по условию, так что это возможно.
ответ: б) параллельны или пересекающиеся.
1.2.
По признаку параллельности прямой и плоскости - мы имеем множество прямых, которые параллельны второй плоскости и они лежат в первой плоскости эта плоскость так же параллельна второй плоскости, ведь если она пересечёт, то найдётся такая прямая, которая так же пересечёт, а как мы выянили все прямые параллельны.
ответ: б) параллельны.
2.
По определению скрещивающиеся прямые это такие прямые, которые не находятся в одной плоскости. Пересекающиеся прямые всегда лежат в одной плоскости (одно из следствий из одной аксиомы стереометрии). Прямые параллельны в пространстве, если они лежат в одной плоскости и не пересекаются (определение).
2.1.
ответ: а) скрещивающиеся.
2.2.
ответ: в) параллельны или пересекающиеся.
Объяснение: