polotovsky
?>

Треугольник ABC — прямоугольный, ∢ A=60° и BA= 2 м. Вычисли стороны треугольника и радиус R описанной около него окружности. R= м; AC= м; BC= 4√3 4√2 2√2 2√3

Геометрия

Ответы

turovskaya69

Объяснение:

ΔABC — прямоугольный,

∠B=90°

∠A=60°

∠C=30°

BA= 2 м.

AC=4m      R=AC/2=2m

BC=2\sqrt{2}


Треугольник ABC — прямоугольный, ∢ A=60° и BA= 2 м. Вычисли стороны треугольника и радиус R описанно
yaart-klementiev29
В треугольнике ABC DN - средняя линия по определению. Значит, по свойству средней линии ND параллельна AB.Отсюда следует параллельность ND и KB,так как KB = 1/2 AB. Имеем также, что ND = 1/2*AB = 1/2*10 = 5 (см).
Так как по условию задачи точка K - середина отрезка AB, то KB  = 1/2*10 = 5 (см).
Аналогично рассуждая,доказываем, что КD - средняя линия треугольника ABC,что KD параллельна NB, что KD = 1/2*BC  = 5 (см) и что BN  = 5 см.
Рассмотрим четырехугольник KBND. В нём ND параллельна KB и KD параллельна BN (по ранее доказанному). Также мы имеем, что NB = KD = 5 см и что KB = DN = 5 см. Значит, по определению данный четырехугольник - параллелограмм. А следуя из того, что NB = KD = KB = DN = 5 см, то получаем, что KBND - ромб. 
Найдем периметр данной фигуры.
P = 5*4 = 20 (см).
ответ: ромб; 20 см
Vladimirovich1898
Сначала найдем точку пересечения диагоналей параллелограмма, зная, что в этой точке диагонали делятся пополам.  Координаты середины отрезка AС найдем по формуле: x = (x1 + x2)/2, y = (y1 + y2)/2, z = (z1 + z2)/2.
В нашем случае Хо=(Хa+Xc )/2=(2+4 )/2=3, Yо=(Ya+Yc )/2=(3+1 )/2=2, Zо=(Za+Zc )/2=(2+0 )/2=1. Итак, мы имеем точку пересечения диагоналей параллелограмма  О(3;2;1).
Теперь по этой же формуле найдем координаты вершины D параллелограмма.
(Xb+Xd)/2=Xo, отсюда Xd=2*Xo+Xb=2*3+0=6, аналогично. Yd=2*Yo+Yb=2*2+2=6 и Zd=2*Zo+Zb=2*1+4=6. Имеем точку D(6;6;6)
 Координаты вектора равны разности соответствующих координат точек его конца и начала BD{Xd-Xb;Yd-Yb;Zd-Zb} или BD{6;4;2}
Длина вектора BD, или его модуль, находится по формуле:
|BD|=√(X²+Y²+Z²) = √(6²+4²+2²) =√56 = 2√14.
ответ: длина диагонали BD равна 2√14.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Треугольник ABC — прямоугольный, ∢ A=60° и BA= 2 м. Вычисли стороны треугольника и радиус R описанной около него окружности. R= м; AC= м; BC= 4√3 4√2 2√2 2√3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Татьяна-Мария
Narine natalya
Alexander2035
latoyan817
uchpaot
martabunova
Styazhkin395
vis-lyubov8832
rebet61
de1979nis
Шаленко
Ахади
Artur-62838
funny-furiya
k-serga1