.
Пусть длина образующей равна L.
Поскольку угол между ними 60 градусов, то сечение - равносторонний треугольник.
Следовательно, длинна хорды в основании конуса, соответствующей центральному уголу 90 градусов, тоже равна L.
Если опустить из центра основания конуса перпендикуляр на эту хорду (на нижнюю сторону сечения), то легко видеть, что он будет равен L/2. (Там получается прямоугольный треугольник с углом в 45 градусов, образованный этим перпендикуляром, половиной хорды и радиусом). Кроме того, если соединить точку пересечения хорды с этим перпендикуляром с вершиной КОНУСА, то получится как раз двугранный угол между сечением и основанием конуса. Это следует из того, что хорда (то есть линия пересечения этих плоскостей) перпендикулярна 2 прямым в этой плоскости - перпендикуляру из центра основания и ОСИ КОНУСА. Этот двугранный угол легко вычислить - мы имеем прямоугольный треугольник, в котором нижний (прилежащий) катет равен L/2,
второй катет - это просто ось конуса, а гипотенуза - одновременно высота в равностороннем треугольнике со строной L (то есть в сечении). Ясно, что длина гипотенузы равна L*sqrt(3)/2.
Поэтому косинус двугранного угла равен 1/sqrt(3). По моему, это уже ответ, но при желании его можно преобразовать, вычислив в градусах. Приближенно он равен 0,955 радиана, или 54,7356 градуса.
Лишним условием является площадь. Это, кстати, сразу ясно - ответ не может зависеть от МАСШТАБА.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
с задачей В прямоугольном треугольнике АВС с правым углом С проведена высота СD. Найдите величину угла А , если DВ=8 , ВС=16.
Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.