впвыпвып-Зуйков629
?>

В правильной треугольной пирамиде через сторону основания равной 4 см проведена плоскость под углом 300 к основанию и перпендикулярно противолежащему боковому ребру. Определить S сечения с дано!

Геометрия

Ответы

Olesya
Пусть основание равно 6х, тогда боковая сторона равна 5х.
Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая.
Запишем теорему Пифагора для одного из прямоугольных треугольников:
10^2+(3x)^2=(5x)^2 \\ 
100+9x^2=25x^2 \\ 
100=16x^2 \\ x^2= \frac{100}{16} \\ 
x=10/4=2,5 \\ 

Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5.
Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75.
С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть:
S= \frac{a*b*c}{4R} \\ 
75= \frac{12,5*12,5*15}{4R} \\ 
R= \frac{2343,75}{300} =7,8125
ответ: 7,8125
Tyukalova
>>> идёт оформление рисунка <<< ожидайте ...

Задача решается через векторы.
Построим вектор \overline{AB} ( (-1)-(-9) , 4-10 ) = \overline{AB} ( 8 , -6 ) ;

Середина D отрезка AB может быть найдена откладыванием половины вектора \overline{AB} от точки A

\frac{1}{2} \overline{AB} = \overline{ ( 4 , -3 ) } ;

Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;

От точки D нужно отложить вектор высоты \overline{h} в обе возможные стороны

Вектор высоты \overline{h} перпендикулярен вектору основания \overline{AB}, а значит его проекции накрест-пропорциональны с противоположным знаком:

(I) \frac{x_h}{y_h} = -\frac{ y_{AB} }{ x_{AB} }, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: x_h * x_{AB} + y_h * x_{AB} = 0 (II) ;

Таким образом вектор \overline{h} пропорционален вектору \overline{h_o} ( 3 , 4 ) , поскольку для вектора \overline{h_o} выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора \overline{h} ;

Вектор \overline{h_o} имеет длину h_o = \sqrt{ x_{ho}^2 + y_{ho}^2 } = \sqrt{ 3^2 + 4^2 } = \sqrt{ 25 } = 5 ;

Аналогично, AB = 10

При этом, поскольу треугольник равносторонний, то значит его высота составляет h = \frac{ \sqrt{3} }{2}AB, т.к \cos{ 60^o } = \frac{ \sqrt{3} }{2} ;

Значит h = 5 \sqrt{3}, а стало быть h = \sqrt{3} h_o ;

В итоге \overline{h} ( 3\sqrt{3} , 4\sqrt{3} ).

Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:

ОТВЕТ:

C_1 ( 3\sqrt{3} - 5 , 7 + 4\sqrt{3} ) /// примечание: 3\sqrt{3} 5 ;

C_2 ( - 3\sqrt{3} -5 , 7 - 4\sqrt{3} ) /// примечание: 4\sqrt{3} < 7 .

Вычислить координаты вершины с равностороннего треугольника авс, если даны координаты а(-9,10), в(-1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В правильной треугольной пирамиде через сторону основания равной 4 см проведена плоскость под углом 300 к основанию и перпендикулярно противолежащему боковому ребру. Определить S сечения с дано!
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

AverinAA6077
tvshi
happych551
ИринаАлександровна
vsemvsego306
Ushakova Sakhno
tatur-642789
Karlova1507
Баранов955
mikhailkirakosyan
Skvik71
сергеевич1958
PoleshchukTatyana
igor8809337
ludakamasana