Поскольку меньшая диагональ основания отсекает от ромба равносторонний треугольник (все углы по 60°), то меньшая диагональ призмы - гипотенуза прямоугольного треугольника с катетами 6 см и 8 см. По т. Пифагора она равна - √(8²+6²)= 10 см.
Объяснение:
Игоревна
19.02.2021
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
eidevyatkina
19.02.2021
Обозначь длину прямоугольника буквой х, тогда ширина его будет х-2. В твоем условии не понятно, длину какой стороны надо увеличить на 4 см, только длины, только ширины или и той, и той? Прочитай внимательно условие! Допустим, именно длину, тогда площадь увеличенного прямоугольника можно записать уравнением: (х+4)*(х-2)= 48, раскрываем скобки и получаем квадратное уравнение: х2+4х-2х-8 = 48, х2+2х-52 = 0 (х2 - это х в квадрате). решив его , найдешь длину х, ширина, соответственно, на 2 см меньше. Если увеличены на 4 см обе стороны, то уравнение: (х+4)*(х-2+4) = 48, (х+4)*(х+2) = 48; х2+4х+2х+8 = 48; х2+6х-40 = 0, в этом случае, D = 9 +40=49 (т.к. уравнение приведенное, а b -четное), х = 10см - это длина, ширина - 8см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
В основе прямой призмы лежит ромб с острым углом 60 и стороной 8 см. Найдите меньшую диагональ призмы, если ее боковое ребро 6 см
Поскольку меньшая диагональ основания отсекает от ромба равносторонний треугольник (все углы по 60°), то меньшая диагональ призмы - гипотенуза прямоугольного треугольника с катетами 6 см и 8 см. По т. Пифагора она равна - √(8²+6²)= 10 см.
Объяснение: