Объяснение:
1. В прямоугольных треугольниках Δ ADN и Δ DFC ∠A = ∠ C по свойству параллелограмма. ⇒ Треугольники подобны по первому признаку. На основе пропорциональности длин сходственных сторон имеем пропорцию:
AD/DC = DN/DF/
DF = 3.5*4/5 = 2.8
2. В треугольниках CFM и CAB ∠F = ∠ A, ∠ M = ∠ B как соответственные при FM║AB. ⇒ Треугольники подобны по первому признаку.
AC/CF = AB / FM
FM = 18*30/(18+27) = 12
AC/CF = CB/CM
CB = 45*15/18=37.5
ВМ = СВ - СМ = 37.5 - 15 = 22,5
3. В треугольниках АВС и ВСD ∠ C общий, ∠В = ∠D по условию задачи ⇒ Треугольники подобны по первому признаку.
АВ/AС = BD / BC
AC = 9*15.6/12 = 11.7
4. В прямоугольных треугольниках АВС и АМF ∠А общий. ⇒ Треугольники подобны по первому признаку.
АС/ВС = AF/MF
АС = 24*9/12 = 18
АВ/ВС = АМ/MF.
AM найдем по теореме Пифагора = √(9²+12²) = 15
АВ = 24*15/12=30
Поделитесь своими знаниями, ответьте на вопрос:
Лёгкая задача! Отрезки AB, AD, AC, AK имеют общую точку A. Постройте эти отрезки. Сколько решений имеет задача
Даны отрезки AB, AD, AC, AK с общей точкой А, расположенные по одной прямой.
Пусть все они направлены вправо от точки А.
Тогда число вариантов их расположения равно 4! = 1*2*3-4 = 24.
С таким же успехом их можно отложить влево.
Итого вариантов 48.