40 см и 25 см
Объяснение:
Дано:
Прямоугольный треугольник АВС (угол С - прямой):
гипотенуза АВ = 130 см
катет ВС = 104 см
Найти:
длины отрезков, на которые биссектриса меньшего острого угла делит медиану, проведенную к гипотенузе.
Решение.
1) По теореме Пифагора найдём длину катета АС:
АС = √(АВ²-ВС²) = √(130²-104²) = √(16900-10816) = √6084= 78 см
2) В треугольнике меньшая сторона лежит против меньшего угла. Это значит, что меньшим острым углом является ∠В, против которого лежит катет АС.
3) Выполним построение.
Из угла В проведём биссектрису, которая пересечет катет АС в точке Е. Из вершины прямого угла С проведём медиану к гипотенузе АВ, и точку пересечения медианы со стороной АВ обозначим D, а точку пересечения медианы CD с биссектрисой ВЕ обозначим F.
В принятых обозначениях необходимы найти DF и FC.
4) Теорема. В прямоугольном треугольнике медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
Следовательно:
DC = АВ : 2 = 130 : 2 = 65 см
Так как точка D является серединой АВ, согласно построению, то:
BD = АВ : 2 = 130 : 2 = 65 см
5) Теорема. Биссектриса данного угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Следовательно:
DF : FC = DB : BC (1)
Так как DC = DF + FC = 65 cм, то
DF = DC - FC = 65-FC (2)
Подставим (2) в (1), получим:
(65-FC) : FC = DB : BC
(65-FC) : FC = 65 : 104
65 · 104 - 104FC = 65FC
6760 = 65FC + 104FC
169 FC = 6760
FC = 6760 : 169 = 40 см
Отсюда DF = 65-FC = 65 - 40 = 25 см
ответ: биссектриса меньшего острого угла делит медиану, проведённую к гипотенузе, на два отрезка длиной (считая от вершины прямого угла) 40 см и 25 см.
Площадь параллелограмма равна модулю векторного произведения векторов, выходящих из одной вершины.
Вектор ВА = (1; -5),
вектор ВС = (8; 1).
S = |a × b|
Найдем векторное произведение векторов:
c = a × b
a × b =
i j k
ax ay az
bx by bz
=
i j k
-1 5 0
8 1 0
= i (5·0 - 0·1) - j ((-1)·0 - 0·8) + k ((-1)·1 - 5·8) =
= i (0 - 0) - j (0 - 0) + k (-1 - 40) = {0; 0; -41}
Найдем модуль вектора:
|c| = √(cx² + cy² + cz²) = √(0² + 0² + (-41)²) = √(0 + 0 + 1681) = √1681 = 41.
Найдем площадь параллелограмма:
S = 41.
Поделитесь своими знаниями, ответьте на вопрос:
класс!как решить?осталось 5 минут
Сторона АВ=
sinA= 0,5
7/0,5=14
cторона АВ=14 см.
периметр 46-14х2=46-28=18 это две короткие стороны
18/2=9см. это каждая из сторон
стороны равны 9см. и 14 см
Объяснение: