Трапеції авсд і ав1с1д мають спільну основу ад і не лежать в одній площині причому вс не рівне в1с1 .доведіть що вв1с1с теж трапеція .знайдіть основи трьох даних трапецій якщо їхні середні лінії дорівнюють 7см, 8см, 9см
Рисунок не могу. Площадь боковой поверхности цилиндра Sбок = 2πRH, где R - радиус, Н – высота цилиндра. Проведем из центра цилиндра до концов хорды радиусы, так как дуга 90°, то радиусы расположены под углом в 90°, ми имеем прямоугольный равнобедренный треугольник, в котором хорда – гипотенуза. Применим теорему Пифагора c^2 = a^2 + b^2, a = b = R, c^2 = 2·R^2, R = c/√2 , = 8√2 /√2 = 8 (см). Теперь найдем высоту. Хорда, диагональ сечения и высота образуют прямоугольный треугольник, в котором хорда и высота – катеты. Найдем катет через другой катет Н = 82·tg 60° = 8√2·√3 = 8√6 (см). Sбок = 2π·8·8√6 = 128√6π
Рисунок не могу. Площадь боковой поверхности цилиндра Sбок = 2πRH, где R - радиус, Н – высота цилиндра. Проведем из центра цилиндра до концов хорды радиусы, так как дуга 90°, то радиусы расположены под углом в 90°, ми имеем прямоугольный равнобедренный треугольник, в котором хорда – гипотенуза. Применим теорему Пифагора c^2 = a^2 + b^2, a = b = R, c^2 = 2·R^2, R = c/√2 , = 8√2 /√2 = 8 (см). Теперь найдем высоту. Хорда, диагональ сечения и высота образуют прямоугольный треугольник, в котором хорда и высота – катеты. Найдем катет через другой катет Н = 82·tg 60° = 8√2·√3 = 8√6 (см). Sбок = 2π·8·8√6 = 128√6π