Осталось найти боковую площадь.она состоит из 2 равных равнобедренных треугольника с основанием b и еще одного равнобедренного с основанием вс. основанием высоты пирамиды будет точка о, которая является центром вписанной окружности в δавс,надо вычислить этот радиус-чтобы потом через него вычислить высоты боковых граней. r=(bc/2)√((2b-bc)/(2b+bc))=b*cosβ*√((1-cosβ)/(1+cosβ я опустила) тогда высота боковых граней будет km=r/cosф=b*cosβ*√((1-cosβ)/(1+cosβ))/cosф s(бок)=(b+b+bc)*km/2=(2b+2b*cosβ)*b*cosβ*√((1-cosβ)/(1+cosβ))/2cosф= =(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosф s(пол)=s(осн)+s(бок)=b^2*sin2β/2+(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosф
Tatyana Anton1475
06.06.2021
Дано: abcd - ромб.ab = 5 см.bd = 6 см.ok ⊥ abcd.найти ka, kb, kc, kd. решение: о - точка пересечения диагоналей. значит ao = co, bo = do = 3 см.рассмотрим треугольники bok и dok. они оба прямоугольные, т.к. ok - перпендикуляр. сторона ok общая, bo = do. значит, эти треугольники равны и kb = kd. из треугольника bok по т. пифагора kb = √(64+9) = √(73) см. найдём диагональ ac. сумма квадратов диагоналей ромба равна квадрату стороны, умноженному на 4.ac^2+bd^2 = 4*ab^2ac^2 +36 = 4*25ac^2 = 64ac = 8 см.тогда ao =co = 4 см.треугольники ako и cko равны, т.к. прямоугольные, ko - общая сторона, ao = co. из треугольника cko по т. пифагораkc = √(64+16) = √(80) см.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Площадь трапеции = 45 квадратных см , одно из оснований 8 см высота 6 см . найти другое основание?
s=1/2*(a+b)/h
a=((s*2)/h)-b
a=((45*2)/6)-8
a=7