т.к. это число делится на 20,то последняя цифра результата должна быть равна 0,а предпоследняя цифра должна быть четной,тогда чтобы оно было минимальным,необходимо чтобы в 1 разряде 20 значного числа была цифра 1. а остальные разряды по максимуму в порядке убывания необходимо сделать нулями (понятно,чтобы так случилось необходимо чтобы предпоследняя цифра была максимальной,то есть 8 (максимальная четная цифра),тогда остенется минимально возможная по условию сумма,а тогда распределение будет наибольшим и можно будет сделать наибольшее количество нулей в разрядах. тогда осталась сумма 20-9=11 и осталось заполнить 20-3=17 цифр. на основании этих данных посчитаем какое наибольшее число нулей в разрядах как можно меньшие цифры в более высоких разрядах,чтобы число было наименьшим,то для этого рекомедуется набрать всю сумму 11 на 17 и 18 разрядаx (19 разряд 8, 20 разряд 0) число 11 представимо в виде суммы следующими способами: 9+2 8+3 7+4 6+5,но тк для наименьшего числа в 17 разряде нужно использовать наименьшую возможную цифру то 17 разряд будет число 2,а 18 число 9. таким образом наше число:
10000000000000002980
Дано:
а||b
c - секущая
∠5=33°
Найти: ∠6,∠7,∠2,∠5,∠4,∠1,∠3,∠8
∠5=33°
1)∠2 и ∠5 - вертикальные
∠2=∠5=33° (по св-ву вертикальных углов)
2) ∠6- смежный с ∠5
∠6+∠5=180° (по св-ву смежных углов)
∠6=180°-∠5=180°-33°=147°
3) ∠4 и ∠6 - вертикальные
∠4=∠6=147° (по св-ву вертикальных углов)
a||b
4) ∠1 и ∠4 - накрест лежащие при прямых а и b
∠1=∠4=147° (по обратной теореме параллельных прямых)
5) ∠3 и ∠2 - накрест лежащие
∠3=∠2=33° ( по обратной теореме параллельных прямых)
6) ∠8 и ∠4 - соответственные при прямых а и b
∠8=∠4 =147° ( по обратной теореме параллельных прямых)
7) ∠7 и ∠2 -соответственные при прямых а и b
∠7=∠2=33° (по обратной теореме параллельных прямых)
ответ: 33°,33°,147°,147°,33°,33°,147°,147°
Поделитесь своими знаниями, ответьте на вопрос:
Найдите радиусы вписанной и описанной окружностей около равностороннего треугольника, если сторона треугольника равна 14 см