mlubov1
?>

Точки пересечения с осями координат y=4/(3+2x-x^2)

Алгебра

Ответы

shalashcoffee
С  осью  ох точки пересечения нет, т.к. на оси ох  у=0.а  в числителе стоит 4, не равная 0.
lighturist

  4 /   2         2         /atan2(-im(m), -re(m))\       4 /   2         2         /atan2(-im(m), -re(m))\

      \/ 3 *\/   im (m) + re (m) *cos||   i*\/ 3 *\/   im (m) + re (m) *sin||

                                    \           2           /                                   \           2           /

n1 = - -

                                3                                                         3                            

                                                                                 

      4 /   2         2         /atan2(-im(m), -re(m))\       4 /   2         2         /atan2(-im(m), -re(m))\

    \/ 3 *\/   im (m) + re (m) *cos||   i*\/ 3 *\/   im (m) + re (m) *sin||

                                  \           2           /                                   \           2           /

n2 = +

                              3                                                         3                            

                /     /                                   \\               /     /                                   \\

            /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

          /   /                 \     /                 \       |atan2| - + ||         /   /                 \     /                 \       |atan2| - + ||

          /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n3 = - 4 /     | - |   + | + |   *cos|| - i*4 /     | - |   + | + |   *sin||

      \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

              /     /                                   \\               /     /                                   \\

          /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

        /   /                 \     /                 \       |atan2| - + ||         /   /                 \     /                 \       |atan2| - + ||

        /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n4 = 4 /     | - |   + | + |   *cos|| + i*4 /     | - |   + | + |   *sin||

    \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

                /     /                                   \\               /     /                                   \\

            /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

          /   /                 \     /                 \       |atan2| + - ||         /   /                 \     /                 \       |atan2| + - ||

          /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n5 = - 4 /     | + |   + | - |   *cos|| - i*4 /     | + |   + | - |   *sin||

      \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

              /     /                                   \\               /     /                                   \\

          /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||           /                       2                         2     |     |im(m)   \/ 3 *re(m)   re(m)   \/ 3 *im(m)||

        /   /                 \     /                 \       |atan2| + - ||         /   /                 \     /                 \       |atan2| + - ||

        /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|         /   |im(m)   \/ 3 *re(m)|     |re(m)   \/ 3 *im(m)|       |     \   6           6         6           6     /|

n6 = 4 /     | + |   + | - |   *cos|| + i*4 /     | + |   + | - |   *sin||

    \/     \   6           6     /     \   6           6     /       \                       2                       /     \/     \   6           6     /     \   6           6     /       \                       2                       /

lbeglarova6

лучше конечно читать параграф но я нашёл обьяснения

Объяснение:

Нули функции

Нулём функции называется то значение х, при котором функция обращается в 0, то есть f(x)=0.

Нули – это точки пересечения графика функции с осью Ох.

Четность функции

Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)

Четная функция симметрична относительно оси Оу

Нечетность функции

Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).

Нечетная функция симметрична относительно начала координат .

Функция которая не является ни чётной ,ни нечётной называется функцией общего вида.

Возрастание функции

Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е. x2>x1 → f(x2)>f(x1)

Убывание функции

Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е. x2>x1 → f(x2)<f(x1)

Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности. Функция f(x) имеет 3 промежутка монотонности:

(-∞ x1), (x1, x2), (x3; +∞)

Находят промежутки монотонности с сервиса Интервалы возрастания и убывания функции

Локальный максимум

Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) > f(x)

Локальный минимум

Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) < f(x).

Точки локального максимума и точки локального минимума называются точками локального экстремума.

x1, x2 - точки локального экстремума.

Периодичность функции

Функция f(x) называется периодичной, с периодом Т, если для любого х выполняется равенство f(x+T) = f(x).

Промежутки знакопостоянства

Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.

f(x)>0 при x∈(x1, x2)∪(x2, +∞), f(x)<0 при x∈(-∞,x1)∪(x1, x2)

Непрерывность функции

Функция f(x) называется непрерывной в точке x0, если предел функции при x → x0 равен значению функции в этой точке, т.е. .

Точки разрыва

Точки, в которых нарушено условие непрерывности называются точками разрыва функции.

x0- точка разрыва.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Точки пересечения с осями координат y=4/(3+2x-x^2)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

parabolaspb
Irina_Chernyaev532
vladburakoff5
yorestov
multikbo3049
fursov-da
Arutyunovich
Ирина-Макаркина253
Станислав Роман994
valueva260860
fygasika
maglevanyycpt
Vyacheslavovna
makitra08
Zladthesecond577