примем всё за 1 х дней - время выполнения всего первым рабочим у дней - время выполнения всего вторым рабочим 1/х - производительность первого рабочего 1/у - производительность второго рабочего 1/х + 1/у = (х + у)/ху - производительность совместная обоих рабочих составляем два уравнения для системы 1 : (х + у)/ху = 12 ху/(х + у) = 12 - первое уравнение составляем второе уравнение 1/2 : 1/х + 1/2 : 1/у = 25 х/2 + у/2 = 25 х + у = 50 - второе уравнение получаем систему ху/(х + у) = 12 х + у = 50 второе подставим в первое вместо знаменателя ху/50 = 12 ху = 600 у = 600/х подставим у = 600/х во второе уравнение х + 600/х = 50 х² - 50х + 600 = 0 х₁ = 20 х₂ = 30 у₁ = 30 у₂ = 20 взаимозаменяемы ответ за 20 дней первый выполнит, за 30 дней - второй.
Поделитесь своими знаниями, ответьте на вопрос:
2. Исследуем функцию на монотонность и на экстремум:
Критические точки функции:
,
,
Определим знак производной в каждом интервале монотонности:
, точка max, так как производная изменила знак с "+" на "−",
, точка min, так как производная изменила знак с "−" на "+".
Вычислим сам экстремум функции в этих точках:
3. Исследуем функцию на выпуклость, вогнутость кривой и перегиб:
Критические точки: , , ,
Определим знак II производной в интервале кривизны:
, значит, кривая выпуклая на промежутке,
, значит, кривая вогнутая на промежутке;
Вычислим ординату точки перегиба:
4. Найдём дополнительные точки графика:
По результатам исследования строим график функции:
Пример 2. Исследовать функцию по первой и второй производной и построить её график: .
1. Область определения функции ,
точка разрыва, чтобы определить её характер, найдём правосторонний и левосторонний пределы функции в этой точке:
Значит, точка разрыва рода,
прямая вертикальная асимптота графика функции.
Найдём наклонную асимптоту графика:
где угловой коэффициент прямой найдём по формуле
Так как существует, то есть и наклонная асимптота. Вычисляем коэффициент b:
Значит, наклонная асимптота графика имеет уравнение .
2. Исследуем функцию на монотонность и на экстремум:
, учтем правило дифференцирования
Критические точки функции:
, , , , х=2,