В решении.
Объяснение:
Решить системы уравнений:
1)8у-х=4
2х-21у=2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
-х=4-8у
х=8у-4
2(8у-4)-21у=2
16у-8-21у=2
-5у=10
у=10/-5
у= -2;
х=8у-4
х=8*(-2)-4
х= -20.
Решение системы уравнений (-20; -2).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
2)2х-у=0,5
8х-5у=13
Выразить у через х в первом уравнении, подставить выражение во второе уравнение и вычислить х:
-у=0,5-2х
у=2х-0,5
8х-5(2х-0,5)=13
8х-10х+2,5=13
-2х=10,5
х=10,5/-2
х= -5,25;
у=2х-0,5
у=2*(-5,25)-0,5
у= -10,5-0,5
у= -11;
Решение системы уравнений (-5,25; -11).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
3)4u+3v=14
5u-3v=25
Разделить первое уравнение на 4 для упрощения:
u+0,75v=3,5
5u-3v=25
Выразить u через v в первом уравнении, подставить выражение во второе уравнение и вычислить v:
u=3,5-0,75v
5(3,5-0,75v)-3v=25
17,5-3,75v-3v=25
-6,75v=7,5
v=7,5/-6,5 (нацело не делится)
v=7 и 5/10 : (-6 и 3/4)
Перевести дроби в неправильные:
v=75/10 : (-27/4)
v= -(75*4)/(10*27)
v= -10/9;
u=3,5-0,75v
u=3,5-0,75*(-10/9)
u=3 и 1/2-3/4*(-10/9)
u=3 и 1/2 + 5/6
u=4 и 1/3
u=13/3.
Решение системы уравнений (-10/9; 13/3).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
4)10p+7q= -2
2p-22=5q
Разделить первое уравнение на 10 для упрощения:
p+0,7q= -0,2
2p-22=5q
Выразить p через q в первом уравнении, подставить выражение во второе уравнение и вычислить q:
p= -0,2-0,7q
2(-0,2-0,7q)-22=5q
-0,4-1,4q-22=5q
-1,4q-5q=22,4
-6,4q=22,4
q=22,4/-6,4
q= -3,5;
p= -0,2-0,7q
p= -0,2-0,7*(-3,5)
p= -0,2+2,45
p= 2,25.
Решение системы уравнений (2,25; -3,5).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
15км/ч
Объяснение:
я сокращу названия: дом=Д
автостанция=А
пусть скорость велосипедиста
от А до Д =х, тогда скорость
от Д до А=х+3. Зная, что расстояние от Д до А= 30км и разница во времени составила 30 минут, составим уравнение:
30минут=1/2часа
найдём общий знаменатель:
перемножим числитель и знаменатель соседних
дробей между собой крест накрест и получим:
х²+3х=90×2
х²+3х=180
х²+3х–180=0
Д=9–4(–180)=9+720=729
х1=(–3–27)/2= –30÷2= –15
х2=(–3+27)/2=24/2=12
х1 нам не подходит поскольку скорость не может быть отрицательной поэтому используем х2=12
Итак: скорость велосипедиста от А до Д=12км/ч, тогда скорость от дома до А=12+3=15 км/ч
Поделитесь своими знаниями, ответьте на вопрос:
В9 часов самоходная баржа вышла из пункта а вверх по реке и прибыла в пункт в; 2 часа спустя после прибытия в в эта баржа отправилась в обратный путь и прибыла в а в 19 часов 20 минут того же дня. предполагая, что средняя скорость течения реки 3 км/ч и собственная скорость баржи все время постоянная, определить в котором часу баржа прибыла в пункт в. расстояние между а и в равно 60 км.
19 1/3 - 9 = 10 1/3 (ч) - время в пути.
10 1/3 ч = 31/3 ч
Пусть х км/ч - собственная скорость баржи,
тогда (х + 3) км/ч скорость баржи по течению реки,
(х - 3) км/ч - скорость баржи против течения реки.
60 : (х + 3) + 60 : (х - 3) + 2 = 31/3
60 * 3 * (х - 3) + 60 * 3 * (х + 3) + 2 * 3 * (х + 3)(х - 3) = 31 * (х + 3)(х - 3)
180х - 540 + 180х + 540 + 6х² - 18х + 18х - 54 = 31х² - 93х + 93х - 279
360х + 6х² - 54 = 31х² - 279
31х² - 6х² - 360х - 279 + 54 = 0
25х² - 360х - 225 = 0 I : 0
5х² - 72х - 45 = 0
D = - 72² - 4 * 5 * (- 45) = 5184 + 900 = 6084 = 78²
Второй корень не подходит, значит, собственная скорость баржи 15 км/ч.
15 - 3 = 12 (км/ч) - скорость баржи вверх по реке.
60 : 12 = 5 (ч) - шла баржа от пункта А до пункта В.
9 + 5 = 14 (ч) - время, в которое баржа прибыла в пункт В.
ответ: в пункт В баржа прибыла в 14 часов.