|(|2x+9|+x-4)|=0 Раскроем модули,начиная с внутреннего |2x+9|: Найдем значение Х, при котором подмодульное выражение обращается в ноль: 2x+9=0 => x=-4,5. Отметим это значение на числовой оси:
-4,5 Рассмотрим два случая: 1)x<4,5 2)x>=-4,5 Первый случай: на промежутке x<-4,5 подмодульное выражение отрицательное, поэтому модуль раскроем со сменой знака: |-2x-9+x-4|=0 |-x-13|=0 Решив это уравнение, получим x=-13. Корень входит в рассматриваемый промежуток. Второй случай: на этом промежутке подмодульное выражение положительное, поэтому модуль раскроем без смены знака: |2x+9+x-4|=0 |3x+5|=0 Решив это уравнение, получим x=-5/3. Этот корень входит в промежуток x>=-4,5. ответ: уравнение имеет два корня {-13; -5/3}
АлександрАлина
01.03.2020
1)log1/4(2x+5)>=-2 ОДЗ: 2x+5>0; 2x>-5; x> -2,5 Решаем неравенство: log1/4(2x+5) >= log1/4(16) 2x+5<=16 2x<=16-5 2x<=11 x<=5,5 С учетом ОДЗ получим: x e (-2,5; 5,5]