Пусть длина прямоугольника равна Х. Тогда его ширина 15 - Х
У нового прямоугольника длина Х + 5, а ширина 15 - Х - 3 = 12 - Х
Поскольку площадь прямоугольника уменьшилась на 8 см², получаем уравнение
Х * (15 - Х) - (Х + 5) * (12 - Х) = 8
15 * Х - Х² - 12 * Х + Х² - 60 + 5 * Х - 8 = 0
8 * Х - 68 = 0
Х = 8,5
Итак, длина прямоугольника была 8,5 см, ширина 15 - 8,5 = 6,5 см, а площадь 8,5 * 6,5 = 55,25 см².
После трансформации длина прямоугольника стала 8,5 + 5 = 13,5 см, ширина 6,5 - 3 = 3,5 , а площадь 13,5 * 3,5 = 47,25 см², то есть уменьшилась на 55,25 - 47,25 = 8 см².
Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
Поделитесь своими знаниями, ответьте на вопрос:
При каком значении k график линейной функции y=kx+6 параллель графику функции y=7x-8
уравнение у=7х+6
в файле графики этих функций