mariy-inkina8
?>

Выполните действие -3а^2(-а+9а^2-2)

Алгебра

Ответы

salahovta
Привет. -3а2(-а+9а2-2)=3а3-27а4+6а2. Если правильно поставь
Mikhail_Magomed635
Для нахождения значения выражения (2√х + 1): √х - √х : х, при условии х > 0, следует выполнить несколько шагов.

Шаг 1: Разложение выражения на отдельные части.
(2√х + 1): √х - √х : х = (2√х + 1) / √х - √х / х

Шаг 2: Упрощение отдельных дробей.
Первую дробь можно упростить, проделав следующую операцию:
2√х + 1 = 2 * √х + 1 * √х / √х = (2√х + √х) / √х = (2 + 1) * √х / √х = 3 * √х / √х = 3

Вторую дробь также можно упростить:
√х / х = √х * 1 / х = √х / х

После упрощения выражение приобретает вид:
3 - √х / х

Шаг 3: Умножение второй дроби на √х / √х для исключения знаменателя.
√х / х * √х / √х = (√х * √х) / (х * √х) = х / (х * √х) = 1 / √х

Теперь выражение становится:
3 - 1 / √х

Шаг 4: Умножение второй дроби на √х / √х для исключения знаменателя.
1 / √х * √х / √х = (1 * √х) / (√х * √х) = √х / (х * √х) = 1 / х

Теперь выражение принимает вид:
3 - 1 / √х + 1 / х

Шаг 5: Приведение дробей к общему знаменателю.
Для сложения дробей с разными знаменателями следует найти их общий знаменатель, который будет равен их произведению:
√х * х = х√х

Первая дробь, 3, можно умножить на 1 в виде (√х * х) / (√х * х), чтобы получить дробь с общим знаменателем:
3 * (√х * х) / (√х * х) = 3х√х / х√х = 3 / 1 = 3

Теперь выражение равно:
3х√х / х√х - 1 / √х + 1 / х

Шаг 6: Вычитание дробей.
Дроби с одинаковыми знаменателями можно вычесть, вычитая числители:
3х√х / х√х - 1 / √х = (3х√х - 1) / х√х

Теперь выражение равно:
(3х√х - 1) / х√х + 1 / х

Шаг 7: Сумма дробей.
Дроби с одинаковыми знаменателями можно сложить, складывая числители:
(3х√х - 1) / х√х + 1 / х = (3х√х + 1) / х√х

Таким образом, значение выражения (2√х + 1): √х - √х : х, при х > 0, равно (3х√х + 1) / х√х.
natalyaSvetlana
Для решения данной задачи нам необходимо разобраться в понятии гамильтоновых путей и турниров на 4 вершинах.

Гамильтонов путь в графе - это простой путь, который проходит через каждую вершину графа ровно один раз. То есть, в задаче с турниром на 4 вершинах мы ищем простые пути, проходящие через все 4 вершины графа.

Турнир - это ориентированный граф, в котором между каждой парой вершин есть ровно одно направленное ребро. В данной задаче нам дан турнир на 4 вершинах, поэтому каждая пара вершин связана направленным ребром.

Теперь давайте пошагово решим задачу.

1. Нарисуем граф с 4 вершинами и обозначим вершины буквами A, B, C, D.

A -> B
↑ / ↓
D <- C

2. Начнем с вершины А. Мы должны выбрать одну из двух возможных вершин, куда можно пойти из А. Пусть мы выбрали вершину B.

A -> B
↑ / ↓
D <- C

3. Теперь мы находимся в вершине B. Мы должны выбрать одну из трех возможных вершин, куда можно пойти из B. Давайте выберем вершину C.

A -> B -> C
↑ / ↓
D

4. Мы находимся в вершине C. У нас остается только одна возможная вершина, куда можно пойти - это вершина D.

A -> B -> C -> D

5. Мы находимся в вершине D. Нам осталась только одна вершина, куда можно пойти - начальная вершина A.

A -> B -> C -> D -> A

Таким образом, мы получили один гамильтонов путь в турнире на 4 вершинах: ABCDA.

Но в данной задаче спрашивают не только один гамильтонов путь, а все возможные гамильтоновы пути. Давайте рассмотрим остальные возможные варианты:

- Вариант 1: ABDCB.
- Вариант 2: ACBDA.
- Вариант 3: ACDBA.
- Вариант 4: ADCBA.
- Вариант 5: ADBCA.
- Вариант 6: BACDB.
- Вариант 7: BADCB.
- Вариант 8: BCADB.
- Вариант 9: BDACB.
- Вариант 10: BDCAB.
- Вариант 11: CABDC.
- Вариант 12: CADBC.
- Вариант 13: CBADC.
- Вариант 14: CDAB.
- Вариант 15: DABCA.
- Вариант 16: DACBA.
- Вариант 17: DBACB.
- Вариант 18: DCAB.

Таким образом, в турнире на 4 вершинах может быть 18 различных гамильтоновых путей.

Ответ: 18.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выполните действие -3а^2(-а+9а^2-2)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Alenachernika9111
margarita25061961
Татьяна_Александра1114
Найдите корень уравнения : -3+7x=2
Любовь
papanovar
kun1969
membuksdk
shajmasha
Sergei Vitalevna
Воронина
Natakarpova75732
sveta073120
Inozemtseva Korolev1271
ecogoi
Shikhova-Vitalii1290