milkline-nn
?>

Функция задана формулой s = √ t + 3 + t , где s - путь ( в км ) , а в t - время ( в ч а) найдите: s(1); s(3); s(4). б) найдите t , если s = 3 км.

Алгебра

Ответы

inessa12006
S(1)=√(1+3)+1=2+1=3 (км)
S(3)=√(3+3)+3=√6+3 (км)
S(4)=√(4+3)+4=√7+4 (км)

3=√(t+3)+t   
9+t^2-6t=t+3   t^2-7t+6=0  t=1  t=6

t=1 c
t=6 c 
Гаврилаш

1)

30% числа k = 0,3a

35% числа p = 0,35p

0,3k > 0,35p на 20

Первое уравнение:

0,3k - 0,35p = 20

2)

20% числа k = 0,2а

30% числа p = 0,3р

0,3р > 0,2k на 8

Второе уравнение:

0,2k + 8 = 0,3p

3)

Решаем систему.

{0,3k-0,35р = 20

{0,2k - 0,3р = - 8

Первое умножим на 2, а второе умножим на (-3)

{0,6k-0,7р = 40

{-0,6k+0,9р = 24

Сложим

0,6k-0,7р -0,6k+0,9р = 40+24

     0,2р = 64

          р = 64 : 0,2

          р = 320

В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.

0,3k - 0,35·320 = 20

0,3k - 112 = 20

0,3k = 112 + 20

0,3k = 132

    k = 132 : 0,3

    k = 440

ответ: k = 440;

          р = 320.

kolyabelousow4059

Відповідь:

Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.

Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.

Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,

8 + 9 + 2,  мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:

8 + 2 + 9 = 10 + 9 = 19.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Функция задана формулой s = √ t + 3 + t , где s - путь ( в км ) , а в t - время ( в ч а) найдите: s(1); s(3); s(4). б) найдите t , если s = 3 км.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Styazhkin395
egoryuzbashev
tkmandarin8376
Struev730
Sidunevgeniya
rusmoney92
Sadovskaya425
taksa6444
Olifirenko119
Sergei Vitalevna
natalya2321
SaraevaTretyakov1941
olg53362928
Usynin-nikolay
lechocolat