Найдите наибольшее и наименьшее значения функции f(x) =18x² +8x³ -3x⁴ (если они существуют) на промежутке [ -2;4]
* * * f (x) =x²(18 +8x -3x²) * * * Непрерывная функция на закрытом интервале(на отрезке) принимает свое наибольшее и наименьшее значения. Функция f(x) =18x² +8x³ -3x⁴ (многочлен третьей степени) непрерывная , интервал закрытый
ответ : 32_ наибольшее значения функции * * * при x = 4 * * * ; - 40_наименьшее значения функции * * * при x = -2 * * * (т.е. на концах интервала)
kulagin777
22.12.2020
1)a) y = 7x + 8 Область определения- любые значения x, то есть x э (- бесконечности;+бесконечности) б) y = 2/(3x + 9) Знаменатель дроби не должен равняться нулю 3x + 9 не равно 0, x не равен - 3, значит область определения x э (- бесконечности; - 3) U (- 3; + бесконечности) в) y = (x + 3)² - область определения любые значения х, то есть x э (- бесконечности;+бесконечности) 2a) y = 1/(3x² +2x + 3) 3x² + 2x + 3 не должно = 0 3x² + 2x + 3 = 0 D/4 = 1 - 9= - 8 Дискриминант отрицательный, а старший член положительный, значит 3x² + 2x + 3 > 0 при любых х, значит область определения x э (- бесконечности;+бесконечности) б) q(x) = 40/(1-x) 1 - x не равно 0 , значит x не равен 1, тогда область определения x э (- бесконечности; 1) U (1; + бесконечности)
* * * f (x) =x²(18 +8x -3x²) * * *
Непрерывная функция на закрытом интервале(на отрезке) принимает свое наибольшее и наименьшее значения.
Функция f(x) =18x² +8x³ -3x⁴ (многочлен третьей степени) непрерывная ,
интервал закрытый
f '(x) =(18x² +8x³ -3x⁴) ' =(18x²) ' +(8x³ ) '- (3x⁴) ' =18*(x²) ' +8*(x³ ) ' - 3(x⁴) ' =
=18*2x +8*3x² -3*4x³ = 36x+ 24x² -12x³ = -12x(x²+2x -3) .
---
f '(x) =0 ;
x(x²+2x -3) =0 ; * * * x²+2x -3 =x² - x +3x-3 =x(x-1)+3(x-1) =(x-1)(x+3) * * *
x(x-1)(x+3) =0
x₁ =0 ; x₂ =1 и x₃ = -3 ∉ [ -2;4]
f(0) = 0²*(18 +8*0 -3*0² ) = 0 ;
f(1) = 1²*(18 +8*1 -3*1² ) =23 ;
f(-2) = (-2)²*(18 +8*(-2) -3*(-2)² ) =4*(18 -16 -12) =4*( -10) = -40 ;
f(4) = 4²*(18 +8*4 -3*4² ) =16*(18 +32 -48)= 16*2 = 32 .
max{ 0 ; 23 ; - 40 ; 32 } = 32 ;
min { 0 ; 23 ; - 40 ; 32 } = -40 .
ответ : 32_ наибольшее значения функции * * * при x = 4 * * * ;
- 40_наименьшее значения функции * * * при x = -2 * * *
(т.е. на концах интервала)