Всего можно составить 24 четырехзначных числа
Из них, на 2 будут делиться 12 чисел, на 4 - 6 чисел, на 11 - 8 чисел.
Объяснение:
Из цифр 2, 4, 7, 9 можно составить 24 четырёхзначных числа, при этом цифры в числах повторяться не будут нам в этом формула перестановок из 4-х элементов:
Р₄=4! =4*3*2*1=24
Сколько же из них будут делиться на 2?
На 2 делятся чётные числа. Среди цифр 2, 4, 7, 9 есть две чётные цифры. Если на месте единиц "закрепить" цифру 2, а остальные три цифры переставлять местами, то получим 3!=3*2*1=6 таких четных чисел. То же повторяем с цифрой 4. Получаем ещё 6 чётных чисел. Всего получено 6+6=12 чисел, делящихся на 2.
На 4 делятся числа, если две его последние цифры нули или образуют число, делящееся на 4. Нулей среди имеющихся у нас цифр нет. Зато из цифр 2, 4, 7, 9 можно составить числа 24, 72 и 92, делящиеся на 4. По очереди "закрепляем" эти цифры в конце числа, а оставшиеся 2 цифры переставляем. Получаем Р₂*3 =2*3=6 чисел делящихся на 4.
Число делится на 11, если сумма цифр, которые стоят на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
11=2+9, 11=4+7
Числа 2 и 9 ставим на четные места, 4 и 7 - на нечётные места и наоборот, получаем 2*2*2=8 чисел:
2497, 2794, 9427, 9742, 4279, 4972, 7249, 7942
Итак, 8 чисел будут делиться на 11.
24 числа можно составить.
Из них на 2 делятся 4
На 4 делятся 2
на 11 делятся 4
Объяснение:
у нас есть 4-значное число. на 1 позицию мы можем поставить 4 числа, на 2-3, на 3-2, на 4-1. Перемножая все варианты получаем 24. Значит всего можно составить 24 числа. Из них на 2 деляться только те у кого а конце 2 или 4 то есть. то есть на 1 позицию можно поставить 2 числа (9 или 7) на вторую 1 число, на последние две тоже по 2 числа, получается 4 числа.
Аналогично для деления на 4 только на последние две позиции можно поставить обязательно 24, получаеся только 2 числа.
И для 11 есть 4 разных числа, где сумма на нечетных позициях = сумме на четных, то есть 4+7 и 2+9
Поделитесь своими знаниями, ответьте на вопрос:
Напишите первые пять членов последовательности: а) an = 2-3n; б) аn = 50-7n; в) bn = 1 / n + 1; г) bn = n³
а) A(n) = 2 - 3 · n;
A(1) = -1
A(2) = -4
A(3) = -7
A(4) = -10
A(5) = -13
б) A(n) = 50 - 7 · n;
A(1) = 43
A(2) = 36
A(3) = 29
A(4) = 22
A(5) = 15
в) B(n) = 1 ÷ n + 1;
B(1) = 2
B(2) = 1,5
B(3) =
B(4) = 1,25
B(5) = 1,2
г) B(n) = n³
B(1) = 1
B(2) = 8
B(3) = 27
B(4) = 64
B(5) = 125
Объяснение:
а) A(n) = 2 - 3 · n;
A(1) = 2 - 3 · 1 = -1
A(2) = 2 - 3 · 2 = -4
A(3) = 2 - 3 · 3 = -7
A(4) = 2 - 3 · 4 = -10
A(5) = 2 - 3 · 5 = -13
б) A(n) = 50 - 7 · n;
A(1) = 50 - 7 · 1 = 43
A(2) = 50 - 7 · 2 = 36
A(3) = 50 - 7 · 3 = 29
A(4) = 50 - 7 · 4 = 22
A(5) = 50 - 7 · 5 = 15
в) B(n) = 1 ÷ n + 1;
B(1) = 1 ÷ 1 + 1 = 2
B(2) = 1 ÷ 2 + 1 = 1,5
B(3) = 1 ÷ 3 + 1 =
B(4) = 1 ÷ 4 + 1 = 1,25
B(5) = 1 ÷ 5 + 1 = 1,2
г) B(n) = n³
B(1) = 1³ = 1
B(2) = 2³ = 8
B(3) = 3³ = 27
B(4) = 4³ = 64
B(5) = 5³ = 125