1) Найдем нулю нашей функции. Для чего разложим на множители формулу, которой она задана, с введения новых вс членов.
Из следует:
а) , отсюда - нуль функции
б) , , отсюда
, - нули функции
Итак, функция обращается в нуль в точках , и
2) Найдем возможные точки экстремума нашей функции. Для чего найдем производную функции :
-----(1)
Разложим квадратный трехчлен, стоящий в правой части (1), на целые множители. Для чего найдем дискриминант этого квадратного трехчлена:
, отсюда найдем корни:
---------(2)
Тогда с (2) выражение (1) примет вид метода интервалов найдем промежутки, на которых производная функции принимает положительные и отрицательные значения:
а) при x принадлежащем объединению промежутков
(-бесконечности; 1/3)U(5; +бесконечности )
б) при x принадлежащем промежутку (1/3; 5)
Известно, что промежутки, на которых производная функции положительна, являются промежутками возрастания функции!
На промежутках, где , функция убывает!
Поскольку при переходе через точку x=1/3 производная меняет знак с плюса на минус, то эта точка - точка максимума
Поскольку при переходе через точку x=5 производная меняет знак с минуса на плюс, то эта точка - точка минимума. Итак,
Введем обозначения:
k - площадь, занятая кукурузой
a - площадь, занятая овсом
p - площадь, занятая пшеном
x - свободная площадь
S - площадь всего поля
По условию, если свободную часть поля полностью засадить пшеном, то пшено будет занимать половину всего поля. Но тогда и кукуруза вместе с овсом будут тоже занимать половину поля. Получаем равенства:
(1)
(2)
По условию, если свободную часть поля поровну поделить между овсом и кукурузой, то овёс будет занимать половину всего поля. Но тогда и кукуруза вместе с пшеном будет занимать половину поля. Получаем равенства:
(3)
(4)
Составим выражение, которое будет отвечать на вопрос задачи. Если свободную часть поля отдать под кукурузу, то она будет занимать площадь , хотя до этого она занимала площадь . Соответственно, площадь увеличилась в раз.
Значит, нужно найти связь между k и x.
Заметим, что правые части уравнений (1)-(4) равны. Удобно приравнять левые части (2) и (3) уравнения, так как в них кроме переменных k и x встречается только переменная a, причем в одинаковом выражении, которое впоследствии взаимно уничтожится:
Подставим в искомое выражение:
ответ: в 3 раза
Поделитесь своими знаниями, ответьте на вопрос:
Выражение; (3х³у)² (а-3)²-2а(2а-3) (у+5)(у--5)(у+5) разложить на множители; а²в-ав² 9х-х² 2ху-6у² х³-25х
(а-3)²-2а(2а-3)=а^2-6а+9-4а^2+6а=-3а^2+9=3(а^2+3)
(у+5)(у-1)-(у-5)(у+5)=у^2-у+5у-5-у^2+25=4у+20=4(у+5)
а²в-ав²=ав(а-в)
9х-х²=х(9-х)
2ху-6у²=2у(х-3у)
х³-25х=х(х^2-25)=х(х-5)(х+5)