kim-1971
?>

Решите уравнение. x^3+x^2+9x+9=0

Алгебра

Ответы

anna-ditman

x^3+x^2+9x+9=x^2(x+1)+9(x+1)=(x+1)(x^2+9)=0

1) x+1=0 \quad \Longleftrightarrow \quad x=-1

2) x^2+9=0 \quad \Longleftrightarrow \quad x^2=-9. Это уравнение не имеет решений в действительных числах.

ответ: x=-1.

Georgievna1407

x^2*(x+1)+9(x+1)=0

(x+1)*(x^2+9)=0

x+1=0

x^2+9=0

x=-1

Объяснение:

kiruha0378
Решить неравенство (m^2-3m-2)(m^2-3m-3) ≤ 2
Решение
Пусть z = m² - 3m, тогда
(m²-3m-2)(m²-3m-3) = (z - 2) * (z - 3) = z² - 5z + 6
z² - 5z + 6 ≤ 2
z² - 5z + 4 ≤ 0
z₁ = 1
z₂ = 4
1) m² – 3m = 1
m² – 3m – 1 = 0
D = 9 + 4*1*1 = 13
m₁ = (3 - √13)/2
m₂ = (3 + √13)/2

2) m² – 3m = 4
m² – 3m – 4 = 0
m₃ = - 1
m₄ = 4
      +                   -                 +                     -          +
>
       (3 - √13)/2          - 1               (3 + √13)/2          4          x

m ∈ [ (3 - √13)/2  ; - 1] [ (3 + √13)/2 ; 4]
mashumi2170
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).

Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:

S = vt ;

Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:

\overline{r} = \overline{v}t ;

Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:

v = v_o + at , либо в векторном виде: \overline{v} = \overline{v_o} + \overline{a} t ;

Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:

S = v_o t + \frac{at^2}{2} либо в векторном виде: \overline{r} = \overline{v_o} t + \frac{ \overline{a} t^2}{2} ;

Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:

a = \frac{F_\Sigma}{m} либо в векторном виде: \overline{a} = \frac{ \overline{F}_\Sigma }{m} ;

Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:

\Delta \varphi = \omega t ;

Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:

\Delta x = A \cos{ ( \omega t + \varphi_o ) } ;

Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:

v = - A \omega \cos{ ( \omega t + \varphi_o ) } ;

Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:

a = - A \omega^2 \cos{ ( \omega t + \varphi_o ) } ;

Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:

Q^o = C \Delta t , где C = cm , либо в удельном виде: Q^o = c m \Delta t ;

Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:

Q^o = \lambda m ;

Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:

Q^o = L m ;

Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:

Q^o = q m ;

Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:

PV = \frac{m}{ \mu } RT ;

Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:

I = \frac{ \Delta q }{ \Delta t } ;

Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:

m F_\Phi z = I \Delta t , где F_\Phi = N_A e ;

Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:

I = \frac{U}{R} ;

Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:

Q^o = UQ = UI \Delta t = I^2 R \Delta t = \frac{ U^2 }{R} \Delta t ,

либо в мощностном виде: P = UI = I^2 R = \frac{ U^2 }{R} ;

Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:

F_A = B I \Delta L \sin{ \varphi } ;

Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:

F_\Lambda = B v q \sin{ \varphi } ;

Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:

U_{ind} = -\Phi'_t .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение. x^3+x^2+9x+9=0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ZharikovZalina
masha812
Lolira64
ГегамБукреев830
konstantin0112
olesyadeinega41
Zimin1111
Александра440
anton
Korneeva1856
lebedevevgen
anastasiaevent4
info2471
APerova3464
fruktovahere