sergei641
?>

Это Установите количество целых решений неравенства -3≤X≤2

Алгебра

Ответы

gbnn90
Пусть 10a+b - двузначное число
Впишем между его цифрами ноль, получим трёхзначное число 100a+b
По условию, оно в 9 раз больше исходного числа, т.е.
100a+b=9(10a+b)
100a+b=90a+9b
100a-90a=9b-b
10a=8b
a=8b:10
a=0,8b

при b=1  a=0,8*1=0,8 - не цифра
при b=2  a=0,8*2=1,6 - не цифра
при b=3  a=0,8*3=2,4 - не цифра
при b=4  a=0,8*4=3,2 - не цифра
при b=5  a=0,8*5=4 - цифра         45 - искомое число  (45*9=405)
при b=6    a=0,8*6=4,8- не цифра
при b=7   a=0,8*7=5,6 -не цифра
при b=8   a=0,8*8=6,4 -не цифра
при b=9   a=0,8*9=7,2 -не цифра
*** Для понимания хода решения и рассуждений показаны все варианты перебора

Итак, существует только одно двузначное число, обладающее указанными свойствами. Оно равно 45
ответ: 45
alakhverdov138
1. y=cos x ; y=tg x.

Решение:
           y'=(cos x)' = -sinx;
           y'=(tg x)'=\frac{1}{cos^2x}.

ответ: -sinx; \frac{1}{cos^2x}

 2. f(x)= 2x²+tg x ; f(x)= 4cos x+3

Решение:
         f'(x)= (2x²+tg x)' =  (2x²)'+(tg x)' =4x+ \frac{1}{cos^2x}

         f'(x)= (4cos x+3)' = (4cos x)' +(3)' = -4sinx+0 =-4sinx
ответ: 4x+ \frac{1}{cos^2x}; -4sinx

2) Найти значение производной f(x) =x³ в точке с абциссой x0=1.

Решение:

f'(x) =(x³)' =3x²

при х=1
 
f'(1) =3*1² =3

ответ: 3

3) Найдите угловой коэффициент касательной, проведённый к графику функции f(x)=3x³+2x-5 в его точке с абциссой х0=2.

Решение:
 Угловой коэффициент касательной к графику функции в точке хо
равен производной функции в точке хо.
Найдем производную.
f'(x)=(3x³+2x-5)'=(3x³)'+(2x)'-(5)' =3*3x² +2-0 =9x²+2
Найдем значение производной в точке хо
f'(2) = 9*2²+2 =36+2=38

ответ: 38

4) Найдите промежутки возрастания функции f(x)=-3x²-36x.

Решение:
Найдем производную функции

f'(x)=(-3x²-36x)' =(-3x²)'-(36x)' =-3*2x - 36 =-6x-36

Найдем критические точки приравняв производную к нулю
                    
       f'(x)=0     
 -6x-36 =0
  6x=-36
   x=-6
На числовой прямой отобразим эту точку и определим знаки производной по методу подстановки. Например при х=0 f'(0) =-36<0
   +         0      -
-----------!-----------
             -6

Функция возрастает на промежутке (-∞;-6) так как производная больше нуля


Иначе можно определить интервал возрастания сразу решив неравенство
       f'(x)>0
  -6x-36>0
   6x+36<0
   6x<-36
     x<-6
ответ: (-∞;-6)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Это Установите количество целых решений неравенства -3≤X≤2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Verakravez8790
teta63
kol-nat26
tatianaavoronina66
samira57
fialkaflowers77
okasnab
Kisuha8465
ale-protasov
infocenterbla
asvavdeeva
геннадиевна2001
irinaastapova2011
mv7095
chuev4444